B.Tech II Year I Semester (R15) Supplementary Examinations June 2017
 SURVEYING - I
 (Civil Engineering)

Time: 3 hours

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks)
(a) Define scale of the map.
(b) What do you mean by well conditioned triangle?
(c) Write Back Bearing for the followings bearings: (i) $125^{\circ} 15^{\prime}$. (ii) $\mathrm{N} 30^{\circ} \mathrm{E}$.
(d) What are the various errors in plane tabling?
(e) Find the correction for curvature and refraction and the combined correction if the distance between stations is 900 m .
(f) Draw the contours showing the characteristics of valley and hill.
(g) Why do we need to take face left and face right observation in theodolite survey?
(h) With a neat sketch, show the difference between included angle, exterior angle and deflection angle in a traverse.
(i) State and explain prismoidal formula for volume computation.
(j) Name any four minor instruments and their functions in surveying.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)
UNIT - I
2 (a) In order to determine the length across a river of a continuing chain line, the following measurements were made (figure given below): $C A=A D=40 \mathrm{~m}, \angle C A D=90^{\circ} ; C E=76.8 \mathrm{~m}, \angle A C E=90^{\circ}=\angle D F E$. Find the length $A B$.

(b) Discuss the principle of surveying.

OR
It is proposed to widen a highway by increasing the gradient of the side slope to 1 in 1.5. The difference in level between the bottom and top of the embankment at a critical section was measured as 15.0 m . The length of the embankment along the side slope was measured as 29.872 m using a steel tape under a pull of 151 N at a temperature of $27^{\circ} \mathrm{C}$. Determine the additional road width which will be available with the new slope. The tape was standardized on the flat at $18^{\circ} \mathrm{C}$ under a pull of 47 N . The cross-sectional area of the tape is $6.5 \mathrm{~mm}^{2}, \mathrm{E}=20.8 \times 104 \mathrm{MN} / \mathrm{m}^{2}$ and $\alpha=1.1 \times 10-5$ per ${ }^{\circ} \mathrm{C}$.

Contd. in page 2

11 A swimming pool is planned to construct in an indoor stadium at level ground. The top edges are $50 \mathrm{~m} \times 40 \mathrm{~m}$. The side slope on longer edges is given as $1: 2$ and on shorter edge is given as 1: 1.5. If depth is 4 m , find out the volume of earthwork.

