B.Tech III Year II Semester (R15) Regular Examinations May/June 2018
 WATER RESOURCES ENGINEERING - I

(Civil Engineering)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks)
(a) Distinguish between scientific hydrology and engineering hydrology. State one example under each case.
(b) Enumerate various methods of field evaporation.
(c) State any two merits and demerits of unit hydrograph.
(d) Distinguish between confined, unconfined and leaky aquifers.
(e) Enumerate methods of improving duty.
(f) Enlist functions of irrigation water.
(g) State any two merits of Lacey's theory over Kennedy's theory.
(h) Enumerate causes of water logging.
(i) Distinguish between weir and barrage.
(j) Enlist the requirements to be fulfilled by canal outlets.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

The ordinates of a 6-h unit hydrograph for a catchment are given below. Derive and plot a 12-h unit hydrograph for the catchment.

| Time (h) | Ordinates of 6-h
 UH (m /S) |
| :---: | :---: |$|$| 0 | 0 |
| :---: | :---: |
| 6 | 20 |
| 12 | 60 |
| 18 | 150 |
| 24 | 120 |
| 30 | 90 |
| 36 | 66 |
| 42 | 50 |
| 48 | 32 |
| 54 | 20 |
| 60 | 10 |
| 66 | 0 |

OR
An unconfined aquifer has a thickness of 30 m . A fully penetrating 20 cm diameter well in this aquifer is pumped at a rate of $35 \mathrm{lit} / \mathrm{s}$. The drawdown measured in two observation wells located at distance of 10 m and 100 m from the wegl are 7.5 m and 9.5 m respectively Detormine the average hydraulic

Define the terms: Duty and Delta. Drive the relationship between Duty and Delta

OR

A watercourse has a culturable commanded area of 1500 hectares. The intensity of Irrigation for crop A is 45% and for B is 40%, both the crops being rabi crops. Crop A has a kor period of 20 days and crop B has kor period of 15 days. Calculate the discharge of watercourse if the kor depth for crop A is 10 cm and for B it is 16 cm

> UNIT - IV

Design an irrigation channel using Lacey's theory for the data given below:

Discharge, Q	$=50$ cumecs
Silt factor, f	$=1$
Side slops	$=1 / 2: 1$

OR

Explain briefly the various types of canal lining with examples.

UNIT - V

Draw a neat sketch of Diversion head work and name various components in it. Also state function of each component.

OR

Design a submerged pipe outlet for the following data:
Discharge through outlet $\quad=0.06 \mathrm{~m}^{3} / \mathrm{s}$
F.S.L. of distributing canal $=100.00 \mathrm{~m}$
F.S.L. of water course $=99.90 \mathrm{~m}$

Full supply depth of distributing canal $=1.1 \mathrm{~m}$
Assume an average value of coefficient of discharge $=0.75$.

