# B.Tech II Year I Semester (R15) Regular Examinations November/December 2016 <br> <br> ELECTRICAL CIRCUITS - II 

 <br> <br> ELECTRICAL CIRCUITS - II}
(Electrical and Electronics Engineering)
Time: 3 hours
Max. Marks: 70

## PART - A

(Compulsory Question)
Answer the following: (10 $\times 02=20$ Marks $)$
(a) Draw the transient response in a RC circuit for a step voltage input.
(b) Write equation for voltage in a RLC series circuit.
(c) Define reactive power.
(d) Calculate the reactance of a coil of inductance 0.32 H when it is connected to a 50 Hz supply.
(e) Define Fourier series.
(f) Define tree.
(g) Define graph.
(h) What is a filter network?
(i) Draw a circuit which acts as a low pass filter.
(j) What is Laplace transform?

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

## UNIT - I

Obtain a Fourier series for the periodic function $\mathrm{f}(\mathrm{x})$ defined as:

$$
\begin{aligned}
f(x)= & -k, \text { when }-\pi<x<0 \\
& +k, \text { when } 0<x<\pi
\end{aligned}
$$

The function is periodic outside of this range with period $2 \pi$


OR
$7 \quad$ Determine the Fourier series to represent the function $f(x)=2 x$ in the range $-\pi$ to $+\pi$


## UNIT - IV

Use mesh-current analysis to determine the current flowing in: (i) 5 Ohms resistance. (ii) 1 Ohm resistance of the d.c. circuit shown in figure below.


OR

11 A low pass $\pi$ section filter has a nominal impedance of 600 Ohms, cut off frequency 2 MHz . Find the frequency at which the characteristic impedance of the section:
(a) 600 Ohms.
(b) 1 K Ohms.

Determine the cut-off frequency and the nominal impedance of the low-pass filter sections shown in figure below.

OR
For the network shown in figure below, determine the voltage $\mathrm{V}_{\mathrm{AB}}$, by using nodal analysis.


UNIT - V


