Code: 15A04302

B.Tech II Year II Semester (R15) Regular Examinations May/June 2017

SWITCHING THEORY & LOGIC DESIGN

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Convert $(0.51 \ 5)_{10}$ to octal.
 - (b) What you mean by weighted code?
 - (c) What are the universal gates? Why they are called universal gates?
 - (d) Find the minterm expansion of f(a, b, c, d) = a'(b' + d) + acd'.
 - (e) Explain binary subtractor.
 - (f) What are the applications of multiplexers?
 - (g) Write the differences between Latches and flip flops?
 - (h) Draw the circuit of Johnsons counter.
 - (i) Write the classification of semiconductor memories?
 - (j) Give the comparison between ROM and PROM.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

Why are complements used in binary arithmetic? What are the advantages and disadvantages of using 2s complement notation in binary arithmetic?

OR

- 3 Convert the following numbers as indicated:
 - (i) $(4350)_5 = ()_2$
 - (ii) $(11010011)_2 = ()_{16}$
 - (iii) $(552)_6 = ()_8$
 - (iv) $(1001001.011)_2 = ()_{10}$
 - (v) $(2AC5.D)_{16} = ()_{10}$

UNIT – II

- 4 Simplify the following Boolean expressions to a minimum number of literals:
 - (a) A'C' + ABC + AC'.
 - (b) (A' + C) (A' + C') (A + B + C'D).

OR

Simplify the following Boolean function to a minimum number of literals. F (A, B, C) = \sum (1, 4, 5, 6, 7). Draw the Logic diagram using NAND gates.

[UNIT – III]

6 Design a 4-bit comparator using four 1-bit comparator modules.

OR

7 Implement 64 x 1 multiplexer with four 16 x 1 and one 4 x 1 multiplexer (use only block diagram).

UNIT – IV

8 Draw the logic diagram of a JK flip flop and using excitation table, explain its operation.

ΟR

9 Convert T-flip flop into D, JK and SR flip flop.

[UNIT – V]

- Implement the following Boolean functions using a PAL that has four sections with three product terms each: F_1 (A, B, C, D) = Σ (2, 12, 13) and F_2 (A, B, C, D) = Σ (7, 8, 9, 10, 11, 12, 13, 14, 15).
- Given a 32 x 8 ROM chip with an enable input, show the external connection necessary to construct a 128 x 8 ROM with four chips and a decoder.
