B.Tech II Year I Semester (R15) Supplementary Examinations June 2017
 DIGITAL LOGIC DESIGN

(Common to CSE and IT)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks)
(a) If $143_{5}=X_{6}$, then X is -----
(b) What is meant by binary logic?
(c) Implement $\mathrm{Y}=\mathrm{A}+\mathrm{BC}$ using minimum number of two input NAND gates.
(d) What is the importance of prime implicants?
(e) What is problem of lock out in counters? Explain.
(f) What is the working principle of magnitude comparator?
(g) What is meant by Flip-Flop?
(h) Where the ripple counter is used? Explain.
(i) What is the function of EAROM?
(j) Draw the circuit diagram of TTL.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 Convert the following to Decimal and then to Octal. (i) 4204_{16}. (ii) 1010011_{2}.

OR

Find the complement of the following Boolean function and reduce into minimum number of literals.

$$
Y=\left(B C^{\prime}+A^{\prime} D\right)\left(D B^{\prime}+C D^{\prime}\right)
$$

UNIT - II

Using 5-variable k-map, find minimal SOP expressions for the following logic function:

$$
F=\sum(0,2,4,5,6,7,8,10,17,18,21,29,31)+d(11,20,22)
$$

OR
Simplify the following expression using tabulation method:

$$
F(A, B, C, D, E)=\sum(0,1,2,3,4,5,10,11,14,20,21,24,25,26,27,28,29,30)
$$

UNIT - III
Design 32:1 Multiplexer using two 16:1 Multiplexers and one 2:1 Multiplexer.

OR

7 (a) Design a 4 bit binary-to-BCD code converter.
(b) Briefly explain the operation of a carry look ahead adder
UNIT - IV

8 (a) Design and draw the logic diagram for MOD-6 ripple counter.
(b) How is the race around condition eliminated in JK Flip Flop?

OR
Convert S-R flip flop into JK-flip flop. Draw and explain the logic diagram.
UNIT - V
(a) Explain about MOS and CMOS logic.
(b) Explain about basic circuit and NOR of ECL with its characteristics.

OR

11 (a) Write short notes on PLA.
(b) Implement the following Boolean function using PLA:
$F_{1}(A, B, C)=\sum m(3,5,6,7) W$. Nananes $u \downarrow t s . C O$.in
$F_{2}(A, B, C)=\sum m(0,2,4,7)$

