Code: 15A04306

B.Tech II Year I Semester (R15) Regular Examinations November/December 2016

DIGITAL LOGIC DESIGN

(Common to CSE and IT)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - What is the Gray equivalent of $(652)_{10}$? (a)
 - (b) Simplify the Boolean expression F = (ABC)' + (AB)'C + A'BC' + A(BC)' + AB'C.
 - What is a decoder? Draw the logic circuit of a 2 line to 4 line decoder. (c)
 - (d) Compare PROM, PLA & PAL.
 - What is problem of lock out in counters? (e)
 - (f) Distinguish between latch & flip flop.
 - (g) Why multiplexer is called data selector?
 - Convert JK Flip flop to T Flip flop. (h)
 - Define the following characteristics of digital logic families: (i) Propagation delay. (ii) Noise Margin. (i)
 - A 4-bit ripple counter and a 4-bit synchronous counter are made using flip flops having a propagation (j) delay of 10ns each. What is the worst case delay in the ripple counter and the synchronous counter?

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

Perform $N_1 + N_2$, $N_1 + (-N_2)$ for the following numbers expressed in 2's complement representation. 2 (a) Verify answers by using decimal addition and subtraction.

> $N_1 = 10001110$ $N_2 = 00001101$

- Simplify the following Boolean expressions to a minimum number of literals: (b)
 - (i) (A'+C)(A'+C')(A'+B+C'D)
 - (ii) x'y' + xy + x'y
- Implement the following function using only NOR gates: F = a(b + cd) + bc'. (c)

OR

- What is Hamming code? Test the following hamming code sequence for 11-bit message and correct it 3 (a) if necessary: (101001011101011).
 - (b) Reduce the expression f = A[B+C'(AB+AC')'].
 - Express the Boolean function f = A(A'+B)(A'+B+C') to maxterms.

UNIT – II

- (a) Reduce the following expressing using k-map: $f = \sum m(1,3,4,5,8,9,13,15)$. 4
 - (b) Obtain minimal POS expression for $\Pi_{M}(1,2,3,8,9,10,11,14)$ d(7,15).

OR

(a) Implement the following function with NAND – AND and NOR – OR two level forms: 5

 $F = \sum m(0,1,2,3,4,8,9,12)$

(b) Obtain minimal expression for $f = \sum m(1,2,3,5,6,7,8,9,12,13,15)$ using the tabular method.

UNIT - III

- (a) Design a combinational circuit with three inputs A, B and C and three outputs x, y and z. When the 6 binary inputs are 0, 1, 2 and 3, the binary output is one greater than the input. When the binary inputs are 4, 5, 6 and 7 the binary outputs are one less than the input.
 - Distinguish between an encoder and a priority encoder? Design an octal to binary priority encoder.

- (a) Briefly explain the operation of a carry look ahead adder 7
 - Realize the function using/f(VAVe, C, M) 22 m (0, 172, 55, 5614) 13, 15) Sing 80 Mulk 11

Contd. in page 2

Code: 15A04306

UNIT - IV

- 8 (a) Draw the schematic circuit of an positive edge triggered JK Flip flop and explain its operation with the help of the truth table. How is the race around condition eliminated?
 - (b) Design a divide by 6 counter using T- flip flop. Write the state table and reduce the expressions using K Map.

OR

9 (a) Design a clocked sequential machine using JK flip flop for the following state table diagram. Use the state reduction procedure if possible.

	PS	NS, Z	
		X=0	X=1
Ī	Α	A,0	B,0
Ī	В	C,0	B,0
	С	A,0	B,1
Ī	D	A,0	B,0

(b) Distinguish between asynchronous and synchronous counters. Write the design steps of synchronous counters.

- 10 (a) Implement a BCD to Gray code converter using ROM.
 - (b) Explain about basic circuit and NOR of ECL with its characteristics.

OR

11 (a) Implement the following Boolean function using PLA:

$$F_1(A,B,C) = \sum m(3,5,6,7)$$

 $F_2(A,B,C) = \sum m(0,2,4,7)$

(b) Draw the circuit of CMOS two input NAND and NOR gate and explain its operation.
