B.Tech III Year I Semester (R15) Supplementary Examinations June 2018 LINEAR INTEGRATED CIRCUITS \& APPLICATIONS

(Common to ECE and EIE)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) List the characteristics of an ideal op-amp.
(b) Sketch the equivalent circuit of an op-amp.
(c) Define slew rate.
(d) List the need for compensating networks.
(e) Sketch an adder circuit using op-amp to obtain the sum of three inputs.
(f) Sketch the op-amp differentiator circuit and write the output equation.
(g) Mention the applications of a Schmitt trigger circuit.
(h) List the basic building blocks of the PLL.
(i) Compare weighted resistor and R-2R ladder DAC.
(j) Give the principle of operation of flash ADCs.

PART - B

(Answer all five units, $5 \times 10=50$ Marks)
UNIT - 1
2 (a) Draw the circuit of basic current mirror and explain its operation.
(b) With block diagram, explain the general stages of an Op-Amp IC.

OR
Describe with diagrams, the open loop configurations of an op-amp.

UNIT - II

5 (a) Explain the open loop frequency response characteristics of an op-amp.
(b) Explain the frequency response characteristics of internally compensated op-amp.

> UNIT - III

6 (a) Describe the circuit of a current to voltage converter circuit.
(b) Explain the circuit diagram of an integrator and derive its output equation.

OR
(a) Draw the circuit and explain the working of dual slope A/D converter.
(b) For a particular dual slope $A D C$, t_{1} is 1 ms and the reference voltage is -1 V . Calculate t_{2} if V_{1} is 5 V and

RC time constant is 1 msec .
OR
Describe with diagram, the working principle of an instrumentation amplifier.

> UNIT - IV

With circuit diagram, describe the working of a Wien bridge oscillator circuit using op-amp.
OR
Draw the circuit of a monostable multivibrator using 555 IC and explain its operation.

> UNIT - V

Describe the operation of high speed sample and hold circuits.

WWW.MANARESULTS.CO.IN

