B.Tech II Year I Semester (R15) Regular Examinations November/December 2016 DISCRETE MATHEMATICS

(Common to CSE \& IT)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: $(10 \times 02=20$ Marks $)$
(a) Construct the truth table $7(7 P \vee 7 Q)$.
(b) Prove that $(\exists x)(P(x) \wedge Q(x)) \Rightarrow(\exists x) P(x) \wedge(\exists x) Q(x)$.
(c) Let $X=\{1,2, \ldots \ldots .7\}$ and $R=\{\langle x, y\rangle \mid x-y$ is divisible by 3$\}$ show that R is an equivalence relation. Draw the graph of R.
(d) Let $\lfloor\sqrt{x}\rfloor$ be the greatest integer $\leq \sqrt{x}$. Show that $\lfloor\sqrt{x}\rfloor$ is primitive recursive.
(e) Let $\langle G, \star\rangle$ be a finite cyclic group generated by an element $a \epsilon G$. Prove that if G is of order n , i.e $|G|=n$ then $a^{n}=e$ so that $G=\left\{a, a^{2}, a^{3}, \ldots . . a^{n}=e\right\}$.
Furthermore n is the least +ve integer for which $a^{n}=e$.
(f) Prove that the minimum weight of the nonzero code words in a group code is equal to its minimum distance.
(g) Let $<L, \leq>$ be a lattice. For any $a, b, c \in L$ then prove that $b \leq c \Rightarrow a * b \leq a * c$.
(h) Prove the Boolean identity $(a \wedge b) \vee\left(a \wedge b^{\prime}\right)=a$.
(i) Prove that a tree with n vertices has precisely $\mathrm{n}-1$ edges.
(j) A label identifier for a computer program consists of one letter followed by three digits. If repetitions are allowed, how many distinct label identifiers are possible.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Show that the formula $Q \vee(P \wedge 7 Q) \vee(7 P \wedge 7 Q)$ is a tautology.
(b) Obtain the principal conjuctive normal form of the formula given by $(7 P \rightarrow R) \wedge(Q \rightleftarrows P)$.

OR
3 (a) Show that $R \wedge(P \vee Q)$ is a valid conclusion from the premises $P \vee Q, Q \rightarrow R, P \rightarrow M$ and $\urcorner M$.
(b) Show that $\urcorner P(a, b)$ follows logically from $(x)(y)(P(x, y)) \rightarrow W(x, y)$ and $\urcorner \dot{W}(a, b)$.

UNIT - II

4 (a) Let Z be the set of integers and let R be the relation called congruence modulo 3 defined by
$R=\{\langle x, y\rangle \mid x \in z \wedge y \in z \wedge(x-y)$ is divisible by 3\}. Determine the equivalence classes generated by the elements of z.
(b) Let $X=\{2,3,6,12,24,36\}$ and the relation \leq be such that $x \leq y$ if x divides y. Draw the Hasse diagram of $\langle x, \leq>$.

OR

5

6

Let F_{x} be the set of all one to one, onto mappings from X onto X where $X=\{1,2,3\}$. Find all the elements of F_{x} and find the inverse of each element.

UNIT - III

(a) Show that every cyclic group of order n is isomorphic to the group $\left\langle z_{n}, t_{n}\right\rangle$.
(b) Prove that a subset $S \neq \emptyset$ of G is a subgroup of $\langle G, *\rangle$. If for any pair of elements $a, b \in s, a * b^{-1} \epsilon s$.

OR Prove that a code can correct all combinations of K or fewer errors if and only if the minimum distance between any two code words is at least $2 \mathrm{~K}+1$.

UNIT - IV

Prove that a connected graph G is Euler if and only if all the vertices of G are even degree.

OR

Explain travelling sales man's problem.

UNIT - V

In how many ways can the 26 letters of the alphabet be permitted so that none of the patterns car, dog, pun or byte occurs?

> www . Mana@esults . co .in

Use generating functions to determine how many four element subsets of $S=\{1,2,3, \ldots \ldots 15\}$ contain no consecutive integers.

