B.Tech I Year I Semester (R15) Supplementary Examinations June 2017
 MATHEMATICS - I

(Common to CE, EEE, CSE, ECE, ME, EIE and IT)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: ($10 \times 02=20$ Marks)
(a) Find the solution of the differential equation.
$\frac{d y}{d x}+\frac{y}{x}=x^{2}$ under the condition $y=1$ when $x=1$.
(b) Find the particular integral of $\left(D^{2}+a^{2}\right) y=\cos a x$.
(c) Solve $y^{\prime \prime}+6 y^{\prime}+9 y=0, y(0)=-4$ and $y^{\prime}(0)=14$
(d) Transform the Cauchy's homogeneous equation $\left(x^{2} D^{2}+x D+4\right) y=\log x \cdot \cos (2 \log x)$ into a linear equation with constant coefficients.
(e) If $u=x \cos y, v=y \sin x$, then find $\frac{\partial(u, v)}{\partial(x, y)}$.
(f) If $f(x, y)=x y+(x-y)$, then find the stationary points.
(g) Evaluate $\int_{0}^{3} \int_{0}^{2}(4-y)^{2} d y d x$.
(h) Evaluate $\int_{-1}^{1} \int_{-2}^{2} \int_{-3}^{3} d x d y d z$.
(i) If $\bar{F}=x(y+z) \bar{\imath}+y(z+x) \bar{\jmath}+z(x+y) \bar{k}$ then find $\operatorname{div} \bar{F}$.
(j) State Green's theorem in a plane.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Solve $\left(1+e^{\frac{x}{y}}\right) d x+e^{x / y}\left(1-\frac{x}{y}\right) d y=0$.
(b) Solve $x^{3} \sec ^{2} y \frac{d y}{d x}+3 x^{2} \tan y=\cos x$.

OR
3 (a) If the air is maintained at $15^{\circ} \mathrm{C}$ and the temperature of the body drops from $70^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ in 10 minutes. What will be its temperature after 30 minutes.
(b) A circuit has in series on electromotive force given by $E=100 \sin (40 t) V$ a resistor of 10Ω and an inductor of 0.5 H . If the initial current is 0 , find the current at time $t>0$.

UNIT - II

4 (a) Solve $\left(D^{2}-2 D\right) y=e^{x} \sin x$ by the method of variation of parameters.
(b) Solve $3 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=x$.

OR

A particle is executing S.H.M with amplitude 5 meters and time 4 seconds. Find the time required by the particle in passing between points which are at distances 4 and 2 meters from the centre of force and are on the same side of it.

UNIT - III

6 (a) Find the Taylor's series expansion of $\sin 2 x$ about $x=\frac{\pi}{4}$.
(b) Verify $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$ for the function $u=\tan ^{-1} \frac{x}{y}$.

OR
7 (a) Find the minimum value of $x^{2}+y^{2}+z^{2}$ given that $x y z=a^{3}$.
(b) Find the point on the plane $x+2 y+3 z=4$ that is closest to the origin.

UNIT - IV

8 (a) Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ over the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(b) Evaluate the double integral $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-b^{2}}}\left(x^{2}+y^{2}\right) d y d x$.

OR

9 (a) Find the area of the loop of the curve $r=a(1+\cos \theta)$.
(b) Evaluate $\iiint_{R}(x+y+z) d z d y d x$ where R is the region bounded by the planes $x=0, x=1, y=0, y=1$, $z=0, z=1$.

UNIT - V

10 (a) If \bar{A} is irrotational vector, evaluate $\operatorname{div}(\bar{A} \times \bar{r})$ where $\bar{r}=x \bar{l}+y \bar{\jmath}+z \bar{k}$.
(b) Evaluate the line integral $\int_{C}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right]$ where C is the square formed by the lines $x= \pm 1$ and $y= \pm 1$.

OR

11
Verify Green's theorem for $\int_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$ where C is bounded by $y=x$ and $y=x^{2}$.

