B.Tech I Year I Semester (R15) Regular Examinations December/January 2015/2016 MATHEMATICS - I
(Common to CE, EEE, CSE, ECE, ME, EIE and IT)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: $(10 \times 02=20$ Marks $)$
(a) If $x=r \cos \theta, y=r \sin \theta$ find $\frac{\partial(x, y)}{\partial(r, \theta)}$.
(b) Find Particular Integral of $\left(D^{2}+1\right) y=\cosh 2 x$
(c) Find the orthogonal trajectories of the family of curve $a y^{2}=x^{3}$
(d) Solve $y^{\prime \prime}+6 y^{\prime}+9 y=0, y(0)=-4$ and $y^{\prime}(0)=14$
(e) Solve $\frac{d y}{d x}+y \tan x=\cos ^{3} x$
(f) State Newton's law of cooling.
(g) State Stokes theorem.
(h) In what direction from ($3,1,-2$), direction derivative of $f=x^{2} y^{2} z^{4}$ is maximum. Find the Maximum value.
(i) Evaluate $\int_{1}^{a} \int_{1}^{b} \frac{d y d x}{x y}$
(j) Find the unit normal to the surface $x^{3}+y^{3}+3 x y z=3$ at the point $(1,2,-1)$.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2
(a) Solve $\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0$
(b) The number N of bacteria in culture grew at a rate proposinonal to N . The value of N was initially 100 and increases to 332 in one hour. What was value of N after $11 / 2$ hours.

OR

3
(a) Solve $\left(D^{2}-1\right) y=x e^{x} \sin x$
(b) Prove that the system of parabolas $y^{2}=4 a(x+a)$ is self orthogonal
UNIT - II

Solve $\left(D^{2}+a^{2}\right) y=$ tanax by method of variation of parameter.
OR
Solve $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}-5 y=\sin (\log x)$
Contd. in page 2

UNIT - III

6 (a) Verify whether the following functions are functionally dependence, if so, find the relation between them $\mathrm{u}=\frac{x+y}{1-x y}, \mathrm{v}=\operatorname{Tan}^{-1} \mathrm{x}+\operatorname{Tan}^{-1} \mathrm{y}$.
(b) Examine for Maxima and Minima of $\sin x+\sin y+\sin (x+y)$

OR
Find a point at the plane $3 x+2 y+z-12=0$ which is nearest to the origin.
UNIT - IV
8 Evaluate the following integral by changing the order of integration $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$

OR

9 (a) Show that the double integration, the area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ is $\frac{16}{3} a^{2}$.
(b) Evaluate the $\int_{0}^{1} \int_{y}^{1-x} \int_{0}^{1-x} x d z d x d y$

UNIT - V

10 (a) Prove that div. $\left(\right.$ grad $\left.r^{m}\right)=m(m+1) r^{m-2}$
(b) Find the directional derivative of $f=x y+y z+z x$ in the direction of vector $i+2 j+2 k$ at the point (1, 2, 0).

OR

11 Verify Green's theorem in the plane for $\oint_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the region by $y=\sqrt{x}$ and $y=x^{2}$.

