

B.Tech I Year I Semester (R15) Regular & Supplementary Examinations December 2016 MATHEMATICS – I

(Common to CE, EEE, CSE, ECE, ME, EIE and IT)

Max. Marks: 70

Time: 3 hours

PART – A (Compulsory Question)

1 Answer the following: (10 X 02 = 20 Marks)

- (a) Find the orthogonal trajectories of the family of parabolas through the origin and foci on the y axis.
- (b) Find the complementary function $(D^3 + 2D)y = e^{2x} + \cos(3x + 7)$.

(c)
$$x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} = 0$$
 has the general solution _____

(d) Find P.
$$I(\theta^2 - 4\theta + 1)^{-1} \sin z$$
.

(e) If
$$u = e^{x+y}$$
, $v = e^{-x+y}$, then find J.

(f) Find the radius of curvature at any point of the cardioids $s = 4 a \sin \frac{\Psi}{2}$.

(g)
$$\int_{D} \int (x^2 + y^2) dx dy =$$
 _____ D: y = x, y² = x.

(h) Evaluate $\int_0^1 dx \int_1^2 dy \int_1^3 xyz dz$.

(i)
$$\nabla \times (\nabla \times \overline{A})$$
 is _____

(j) Evaluate $\int_c y^2 dx - 2x^2 dy$ along the parabola $y = x^2$ from (0, 0)to (2, 4).

(Answer all five units, 5 X 10 = 50 Marks)

2 Solve:
$$x(x-1)\frac{dy}{dx} - y = x^2(x-1)^3$$
.

3 Solve:
$$(D^3 + 2D^2 - 3D)y = xe^{3x}$$
.

UNIT – II

OR

4 Solve: $(D^2 + a^2)y = \tan ax$ by the method of variation of parameters.

OR

5 The deflection *y* of a strut of length *l* with one end built-in and other end subjected to the end thrust *P*, satisfies $\frac{d^2y}{dx^2} + a^2y = \frac{a^2R}{P}(1-x)$. Find the deflection *y* of the strut at *a* distance *x* from the built-in end.

UNIT – III)

6 (a) If
$$u = \sin^{-1}\left(\frac{x^2y^2}{x+y}\right)$$
 then show that $xu_x + yu_y = 3 \tan u$.

(b) If
$$u = x + y + z$$
, $uv = y + z$, $uvw = z$, then prove $\frac{\partial(x,y,z)}{\partial(u,v,w)} = u^2 v$.

- 7 (a) Find the points on the surface $z^2 = xy + 1$ nearest to the origin.
 - (b) Find the radius of curvature at (3,3) on the curve $x^3 + xy^2 6y^2 = 0$.

Contd. in page 2

www.ManaResults.co.in

UNIT – IV

8 Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} y^2 dx dy$ by changing the order of integration.

OR

9 Evaluate $\int \int \int xy^2 z dx dy dz$ taken through the positive octant of the sphere: $x^2 + y^2 + z^2 = a^2$.

UNIT – V

- 10 (a) Find the directional derivative of f = xy + yz + zx in the direction of vector $\overline{i} + 2\overline{j} + 2\overline{k}$ at the point (1, 2, 0).
 - (b) Find curl \overline{f} where $\overline{f} = \text{grad} (x^3 + y^3 + z^3 3xyz)$. OR
- 11 Evaluate by Green's theorem $\oint_c (y \sin x) dx + \cos x dy$ where C is triangle enclosed the lines $y = 0, x = \frac{\pi}{2}, \pi y = 2x.$

www.ManaResults.co.in