Code: 15A54301

B.Tech II Year II Semester (R15) Regular Examinations May/June 2017

MATHEMATICS – III

(Mechanical Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- Show that the matrix $A = \begin{bmatrix} 1 & 1-3i & 3+5i \\ 1+3i & 8 & 6-7i \\ 3-5i & 6+7i & 4 \end{bmatrix}$ is Hermitian. Find the quadratic form relating to $\begin{bmatrix} 1 & 3 & -1 \\ 3 & 4 & 5 \\ -1 & 5 & 2 \end{bmatrix}$.
- (b)
- Give the formula for finding the square root of the number N, using Newton-Raphson formula. (c)
- Explain briefly about Crout's triangular method. (d)
- Write Newton's backward forward interpolation formulae. (e)
- List the applications of Lagrange's formulae. (f)
- Write the normal equations to fit the second degree polynomial. (g)
- State Simpson's 3/8 the rule. (h)
- Write Runge Kutta third order formula. (i)
- (i) Write down the Liebmann's iterative formula for solving the Laplace equation.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT - I

Show that the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ satisfies its own characteristic equation and find A⁻¹. 2

3 Reduce the real quadratic form

 $3x_1^2 - 3x_2^2 - 5x_3^2 - 2x_1x_2 - 6x_2x_3 - 6x_3x_1$ to the canonical form.

(UNIT - II)

Find the positive root of $x^2 - \log_{10} x - 12 = 0$ by Regula Falsi method. 4

5 Solve by using triangularisation method

x + y = 2; 2x + 3y = 5.

UNIT - III

6 The following data gives the melting point of an alloy of lead and zinc, where t is the temperature in degree C and P is the percentage of lead in the alloy.

Р	40	50	60	70	80	90
t	180	204	226	250	276	304

Find the melting point of alloy containing 84% lead.

7 Using String's formula find f(1.22).

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7
f(x)	0.8484	tQ789127	01,9320	0,9635	-0.9854+	-0.9974	A.995	-0. 9938

Contd. in page 2

Code: 15A54301

Fit a least square curve of the form $y = ae^{bx}$ 8

Ī	х	1	2	3	4
ĺ	у	1.65	2.70	4.50	7.35

OR

Find the value of $\int_0^1 \frac{dx}{1+x^2}$ taking 5 subintervals by Trapezoidal rule correct to five significant figures. 9 Compare it with exact value.

UNIT - V

Using Runge – Kutta method, calculate y(0.1) for $\frac{dy}{dx} = \frac{2xy}{1+x^2} + 1$, y(0) = 0. OR 10

Solve $y^{\parallel} = y - x^2$ with y(0) = 1 by Picard's up to third approximation and find y(0.1) and y(0.2). 11