## B.Tech II Year I Semester (R15) Supplementary Examinations June 2018

## **MATHEMATICS - III**

(Common to CE, CSE, IT, ME, EEE, ECE & EIE)

Time: 3 hours Max. Marks: 70

## PART - A

(Compulsory Question)

1 Answer the following:  $(10 \times 02 = 20 \text{ Marks})$ 

- (a) Find the rank of the matrix  $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{pmatrix}$ .

  (b) Express the matrix  $A = \begin{pmatrix} 1+i & 2 & 5-5i \\ 2i & 2+i & 4+2i \\ -1+i & -4 & 7 \end{pmatrix}$  as the sum of Hermitian matrix and Skew-Hermitian
- (c) State the underlying principle of false position method.
- (d) Find the Newton-Raphson iterative formula for  $\frac{1}{N}$ .
- State Gauss's forward interpolation formula. (e)
- State Stirling's interpolation formula. (f)
- Reduce  $y = a.x^b$  into linear form and write its normal equation. (g)
- Write down the formula for  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$  at any point that are derived from Newton's forward interpolation (h) formula.
- Explain Picard's method. (i)
- Find y(0.1) if  $\frac{dy}{dx} = x y^2$ , y(0) = 1 by Euler's method. (j)

## PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

Diagonalise the matrix  $A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{pmatrix}$ . 2

Reduce the quadratic form  $x_1^2 + 2x_2^2 + x_3^2 - 2x_1x_2 + 2x_2x_3$  to canonical form and also find its 3 corresponding linear transform.

UNIT – II

- Find the root of  $x^3 2x 5 = 0$  by Regula-Falsi method. (a)
  - Solve the system of equations using Gauss-Seidel method: (b)

x + y + 54z = 110; 27x + 6y - z = 85; 6x + 15y + 2z = 72

- Find the real root of 3x cosx 1 = 0 by Newton's Raphson method. 5 (a)
  - Solve the system of equation by Crout's method:

3x + y + z = 4; x + 4y - z = -5; x + y - 6z = -12

Contd. in page 2

UNIT – III

From the following data find y(43).

| <i>x</i> : | 40  | 50  | 60  | 70  | 80  | 90  |
|------------|-----|-----|-----|-----|-----|-----|
| <i>y</i> : | 184 | 204 | 226 | 250 | 276 | 304 |

Find f(0.37) using Bessel's formula from the following data: (b)

| <i>x</i> : |        | U.—    | 0.0    | 0. 1   | 0.5    |
|------------|--------|--------|--------|--------|--------|
| <i>y</i> : | 0.0998 | 0.1986 | 0.2955 | 0.3894 | 0.4794 |

OR

(a) Use Lagrange's method find y(40). 7

| <i>x</i> : | 30  | 35 | 45 | 55 |
|------------|-----|----|----|----|
| <i>y</i> : | 148 | 96 | 68 | 34 |

Find the value of y at x = 2.9 from the following data using Gauss's backward formula. (b)

| x:         | 2.0   | 2.5   | 3.0   | 3.5   | 4.0   |
|------------|-------|-------|-------|-------|-------|
| <i>y</i> : | 246.2 | 409.3 | 537.2 | 636.3 | 715.9 |

UNIT - IV

Find the straight line that best fits the following data: 8 (a)

| <i>x</i> : | 1  | 2  | 3  | 4  | 5  |
|------------|----|----|----|----|----|
| <i>y</i> : | 14 | 27 | 40 | 55 | 68 |

(b) Obtain the value of f'(105) using the following data:

| 26.   | 60   | 75   | 00   | 105  | 120  |
|-------|------|------|------|------|------|
| χ.    | 0    | 2    | 90   | 103  | 120  |
| f(x): | 28.2 | 38.2 | 43.2 | 40.9 | 37.7 |

OR

9 (a) Fit a second degree parabola to the following data:

| <i>x</i> : | 10 | 12 | 15 | 23 | 20 |
|------------|----|----|----|----|----|
| <i>y</i> : | 14 | 17 | 23 | 25 | 21 |

(b) Evaluate  $\int_0^1 \frac{dx}{1+x}$  by trapezoidal rule dividing the range into eight equal parts.

( UNIT - V )

(a) Given  $\frac{dy}{dx}=3x+\frac{y}{2}$ , y(0)=1 find y(0.1) using Taylor's series method. (b) Given  $\frac{dy}{dx}=\frac{y-x}{y+x}$ , y(0)=1 find y(0.2) by Runge-Kutta method. 10

Solve  $U_{xx} + U_{yy} = 0$  in  $0 \le x \le 4$ ,  $0 \le y \le 4$  given that u(0,y) = 0; u(4,y) = 12 + y, u(x,0) = 3x and  $u(x,4) = x^2$ , take h = k = 1. 11