B.Tech II Year II Semester (R15) Regular Examinations May/June 2017

MATHEMATICS - IV
(Common to EEE, ECE and EIE)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)

1 Answer the following: ($10 \times 02=20$ Marks)
(a) Compute $\Gamma(3.5)$.
(b) $\beta\left(\frac{9}{2}, \frac{7}{2}\right)$.
(c) Compute $J_{0}(2)$
(d) $J_{0}(x)=\frac{9}{2}\left[J_{2}(x)-J_{0}(x)\right]$ use recurrence relation.
(e) Find the critical points of the transformation $w^{2}=(z-a)(z-b)$.
(f) Compute $\mathrm{V}(\mathrm{r}, \theta)$ when $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{r}, \theta)+\mathrm{iv}(\mathrm{r}, \theta)$. Here $\mathrm{u}(\mathrm{r}, \theta)=\left(\mathrm{r}+\frac{1}{\mathrm{r}}\right) \cos \theta$.
(g) Expand Taylor's series $\cos z$ about the point $z=\pi / 2$.
(h) Write the formula of pole of order n at $z=z_{0}$.
(i) Evaluate $\oint_{C} e^{1 / z^{2}} d z$ where C is $|z|=2$ traversed counterclockwise.
(j) Evaluate $\oint_{C} \frac{d z}{z^{2}(z+4)} d z$ where C is $|z|=2$.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

3 (a) Find the value of $\Gamma\left(\frac{1}{2}\right)$.
(b) Derive $\int_{0}^{\frac{\pi}{2}} \sin ^{\mathrm{n} \theta} d \theta$.

Show that $J_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \cos \phi) d \phi$.
Find the value of $J_{\frac{1}{2}}(x)$.

UNIT - II

OR

State and prove relation between Beta and Gamma function.
OR

11 $\Psi=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}$. Use Milne Thomson method. $w_{2}=-1$ and $w_{3}=\infty$.
(b) Find the fixed points of the bilinear transformation $w=(z-1) /(z+1)$.
UNIT - IV

Evaluate $\int_{C} \frac{e^{2 z}}{(z+1)^{4}} d z$ where C is the circle $|z|=2$, using complex integration formula.

OR

Represent the function $f(z)=\frac{4 z+3}{z(z-3)(z-2)}$ as Laurent series:
(i) With in $|z|=1$. (ii) In the annulus region $|z|=2$ and $|z|=3$. (iii) Exterior to $|z|=3$.

> UNIT - V

Apply the calculus of residues to evaluate $\int_{0}^{2 \pi} \frac{d \theta}{2-\sin \theta}$.

OR

Find the analytical function of the complex potential for an electric field $\mathrm{w}=\varphi+\mathrm{i} \Psi$, given that
(a) Find the bilinear transformation that maps the points $z_{1}=-i, z_{2}=0, z_{3}=i$ into the points $w_{1}=0$,
(b) Evaluate $\oint_{C} \frac{z^{2}}{z^{2}-j z+2} d z$ where C is $|z|=3 / 2$, traversed counterclockwise.

