

B.Tech II Year II Semester (R15) Regular Examinations May/June 2017 MATHEMATICS – IV

(Common to EEE, ECE and EIE)

Time: 3 hours

Max. Marks: 70

PART – A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) Compute $\Gamma(3.5)$.
 - (b) $\beta\left(\frac{9}{2}, \frac{7}{2}\right)$.
 - (c) Compute $J_0(2)$
 - (d) $J_0(x) = \frac{9}{2}[J_2(x) J_0(x)]$ use recurrence relation.
 - (e) Find the critical points of the transformation $w^2 = (z a)(z b)$.
 - (f) Compute V(r, θ) when f(z) = u(r, θ) + iv(r, θ). Here u(r, θ) = $\left(r + \frac{1}{r}\right)\cos\theta$.
 - (g) Expand Taylor's series $\cos z$ about the point $z = \pi/2$.
 - (h) Write the formula of pole of order n at $z = z_0$.
 - (i) Evaluate $\oint_C e^{1/z^2} dz$ where C is |z| = 2 traversed counterclockwise.
 - (j) Evaluate $\oint_C \frac{dz}{z^2(z+4)} dz$ where C is |z| = 2.

PART – B

OR

2 State and prove relation between Beta and Gamma function.

(a) Find the value of $\Gamma\left(\frac{1}{2}\right)$.

(b) Derive $\int_0^{\frac{\pi}{2}} \sin^{n\theta} d\theta$.

3

UNIT – II

4 Show that
$$J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \cos \phi) d\phi$$
.

5 Find the value of $J_{\frac{1}{2}}(x)$.

UNIT – III

OR

6 Find the analytical function of the complex potential for an electric field $w = \varphi + i\Psi$, given that $\Psi = x^2 - y^2 + \frac{x}{x^2 + y^2}$. Use Milne Thomson method.

OR

- 7 (a) Find the bilinear transformation that maps the points $z_1 = -i$, $z_2 = 0$, $z_3 = i$ into the points $w_1 = 0$, $w_2 = -1$ and $w_3 = \infty$.
 - (b) Find the fixed points of the bilinear transformation w = (z 1)/(z + 1).

UNIT – IV

8 Evaluate $\int_C \frac{e^{2z}}{(z+1)^4} dz$ where C is the circle |z| = 2, using complex integration formula.

OR

9 Represent the function
$$f(z) = \frac{4z+3}{z(z-3)(z-2)}$$
 as Laurent series:
(i) With in $|z| = 1$. (ii) In the annulus region $|z| = 2$ and $|z| = 3$. (iii) Exterior to $|z| = 3$.
UNIT - V
10 Apply the calculus of residues to evaluate $\int_{0}^{2\pi} \frac{d\theta}{z-z}$.

Apply the calculus of residues to evaluate
$$\int_0^{\infty} \frac{1}{2-\sin\theta}$$
.

11 (a) Evaluate
$$\int_{|z|=\frac{1}{2}} \frac{dz}{(z-1)(z+2)^2} W$$
 ing Residuate General LS.CO.in

(b) Evaluate $\oint_C \frac{z^2}{z^2 - jz + 2} dz$ where C is |z| = 3/2, traversed counterclockwise.