Set Code:	T2
Booklet Code :	A

Note: (1) Answer all questions.

- (2) Each question carries 1 mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.

(CRI)

The OMO Becomes Short will be invalidated if the circle is shaded using ink / ball non CERAMIC TECHNOLOGY

INSTRUCTIONS TO CANDIDATES

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on
 the leafler attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING,
 THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE
 HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE
 SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- Immediately on opening this Question Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- Use of Culculators, Mathematical Tables and Log books is not permitted.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate:
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- 9. Rough work should be done only in the space provided in the Question Paper Booklet.
- No loose sheets or papers will be allowed in the examination half.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination half candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

I-A (CRT)

MATHEMATICS

- 1. If $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, then $A^4 = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
- (3) 271
- 2. If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x is
 - (1) 1
- (2) 2
- (3) 3
- 3. What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3
 - (1) 64
- (2) 268 (3) 512

- 4. If $A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$, then |A| =
 - (1) 1
- (2) 2

- 5. The solution of a system of linear equations 2x - y + 3z = 9, x + y + z = 6, x - y + z = 2 is
 - (1) x = -1, y = -2, z = -3

(2) x = 3, y = 2, z = 1

(3) x = 2, y = 1, z = 3

- (4) x = 1, y = 2, z = 3
- 6. If $\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x ai}$ then A =______, B =______
 - (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

- 7. If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then $\sum_{i=1}^3 A_i$ is equal to
- (2) 2A,
- (3) 4A,

- 8. The period of the function $f(x) = |\sin x|$ is

 - (1) π (2) 2π
- (3) 3π
- (4) 4π

- If A+B=45°, then (1-cotA). (1-cotB) is
 - (1) 1
- (2) 0

- (3) 2
- (4) -1

- The value of sin 78° + cos 132° is
 - (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$

- 11. If $A+B+C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$
 - (1) 4 cosA sinB cosC

(2) 4 sinA cosB sinC

(3) 4 cosA cosB cosC

- (4) 4 sinA sinB sinC
- 12. The principal solution of Tanx = 0 is
 - (1) $x = n\pi, n \in \mathbb{Z}$

(2) x=0

(3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$

(4) $x = n\pi + \alpha, n \in \mathbb{Z}$

13	The value of	Tan	1(2)+	Tan-1	(3) is
1.3	The value of	1 4111	(-1	N CREE	(0)10

- (1) $\frac{\pi}{4}$
- (2) $\frac{\pi}{2}$
- (4) $\frac{3\pi}{4}$

- (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5
- (4) 4:5:6

15. The value of
$$r.r_1.r_2.r_3$$
 is

- ∆²
- (2) Δ⁻²
- (3) A-3
- (4) A4

16.
$$\frac{1}{r1} + \frac{1}{r2} + \frac{1}{r3} =$$

- (1) $\frac{1}{r}$ (2) $\frac{1}{2r}$
- (3) $\frac{1}{R}$

17. If
$$a=6$$
, $b=5$, $c=9$, then the value of angle A is

- (1) cos-1 (2/9)
- (2) cos-1 (2/5)
- (3) cos-1 (7/9) (4) cos-1 (1/3)

- (1) $\sqrt{2}e^{-i\pi/4}$
- (2) $\sqrt{2}e^{i\pi/4}$
- (3) $\sqrt{2}e^{ix/2}$ (4) $\sqrt{2}e^{-n/2}$

19. If
$$1, \omega, \omega^2$$
 be the cube roots of unity, then the value of $2^{\omega^3}.2^{\omega^5}.2^{\omega}$ is

- (1) w
- (2) w2
- (3) 1

(4) 0

20. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2-c}$ (2) $\sqrt{f^2-c}$ (3) $2\sqrt{g^2-c}$ (4) $2\sqrt{f^2-c}$

21. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is (2, 7), then the other end of the diameter is

- (1) (3, 1)
- (2) (1,3)
- (3) (-3, -1) (4) (-1, -3)

- 22. The radius of the circle $\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$ is
 - (1) 2c

- 23. The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are
 - (1) $x = a \sec \theta, y = b \tan \theta$

- (2) $x = b \sin\theta$, $y = a \cos\theta$
- (3) $x = a \cos\theta, y = b \sin\theta$

- (4) $x = a \csc\theta$, $y = b \cot\theta$
- 24. The equation of the directrix of the parabola $2x^2 = -7y$ is
 - (1) 8y+7=0
- (2) 8y-7=0
- (3) 7y+8=0
- (4) 8x-7=0
- 25. The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{c^2} \frac{y^2}{b^2} = 1$ is

 - (1) c = a/m (2) $c^2 = a^2m^2 b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

- 26. $Lt \frac{\sqrt{5x-4-\sqrt{x}}}{x-1}$ is
 - (1) 3
- (2) 2
- (3) 4
- (4) 1

- 27. $\log i =$
 - (1) $\pi/2$
- (2) π/4
- (3) $i\pi/2$
- (4) iπ/4

- 28. $\frac{d}{dr}[\log_7 X] =$

- (1) $\frac{1}{r}$ (2) $X \log_7^{\circ}$ (3) $\frac{1}{r} \log_7^{\circ}$ (4) $\frac{1}{r} \log_7^{\circ}$
- 29. $\frac{d}{dx}[2\cosh x] =$
 - (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

30.
$$\frac{d}{dx} \left[\cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right] =$$

(1)
$$\frac{1}{1+x^2}$$
 (2) $\frac{-1}{1+x^2}$

(2)
$$\frac{-1}{1+x}$$

(3)
$$\frac{2}{1+x^2}$$

(4)
$$\frac{-2}{1+x^2}$$

31. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$

(1)
$$\sqrt{\frac{y}{x}}$$
 (2) $\sqrt{\frac{x}{a}}$

(2)
$$\sqrt{\frac{x}{a}}$$

(3)
$$\sqrt{\frac{a}{x}}$$

(4)
$$\sqrt{\frac{x}{y}}$$

32. The derivative of
$$e^x$$
 with respect to \sqrt{x} is

(1)
$$\frac{2\sqrt{x}}{e^x}$$

(1)
$$\frac{2\sqrt{x}}{e^x}$$
 (2) $2\sqrt{x}e^x$ (3) $\frac{e^x}{2\sqrt{x}}$

$$(3) \quad \frac{e^x}{2\sqrt{x}}$$

(4)
$$\sqrt{x} e^x$$

33. The equation of the normal to the curve
$$y = 5x^4$$
 at the point (1, 5) is

(1)
$$x + 20y = 99$$

(2)
$$x + 20y = 101$$

(3)
$$x - 20y = 99$$

The equation of the normal to the curvey
$$x = 20y = 99$$
 (4) $x - 20y = 101$

34. The angle between the curves
$$y^2 = 4x$$
 and $x^2 + y^2 = 5$ is

(1)
$$\frac{\pi}{4}$$

35. If
$$u = x^3y^3$$
 then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$

(1)
$$6(x^3+y^3)$$
 (2) $6x^3y^3$ (3) $6x^3$

$$(2) \cdot 6x^3y$$

$$(3)$$
 $6x^3$

36.
$$\int \csc x dx =$$

(1)
$$\log(\csc x + \cot x) + C$$

(2)
$$\log(\cot x/2) + C$$

(3)
$$\log (\tan x/2) + C$$

(4)
$$-\csc x.\cot x + C$$

37.
$$\int_0^{\pi} \cos^{11} x \, dx =$$

(1)
$$\frac{256}{693}$$
 (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$

(2)
$$\frac{2567}{693}$$

(3)
$$\frac{\pi}{4}$$

$$(4)$$
 $\frac{128}{693}$

38.
$$\int f'(x) [f(x)]^n dx =$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2) $\frac{[f(x)]^{n+1}}{n-1} + C$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$

$$39. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

(2)
$$2Tan^{-1}(\sqrt{x+6})+C$$

(3)
$$Tan^{-1}(x+7)+C$$

(4)
$$2Tan^{-1}(x+7)+C$$

40.
$$\int \tan^{-1} x \, dx =$$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$

(2)
$$\frac{1}{1+r^2} + C$$

(3)
$$x^2.Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1+x^2} + C$$

41.
$$\int \frac{dx}{1+e^{-x}} =$$

(1)
$$\log (1+e^{-x}) + C$$

(2)
$$\log (1+e^x) + C$$

(4)
$$e^x + 0$$

42.
$$\int_{-\pi}^{2} \sin |x| dx =$$

$$(4) -1$$

- 43. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- 44. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} 3y = x$ is
 - (1) 1

- (3) 3
- (4) 2

- 45. The degree of $\left[\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2\right]^{\frac{5}{2}} = a\frac{d^2y}{dx^2}$ is
 - (1) 4

- (3) 1
- (4) 3
- 46. The family of straight lines passing through the origin is represented by the differential equation (1) ydx + xdy = 0 (2) xdy - ydx = 0 (3) xdx + ydy = 0 (4) xdx - ydy = 0

- 47. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + by + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $ye^{-x^2} = x + c$ (2) $ye^x = x + c$ (3) $ye^{x^2} = x + c$ (4) y = x + c

- 49. The complementary function of $(D^3+D^2+D+1)y = 10$ is
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$
- (2) $C_1 \cos x + C_2 \sin x + C_3 e^x$

(3) C, + C, cosx + C, sinx

- (4) $(C_1 + C_2x + C_2x^2)e^x$
- 50. Particular Integral of $(D-1)^t y = e^x$ is
 - (1) x4 er
- (2) $\frac{x^4}{24}e^{-x}$ (3) $\frac{x^4}{12}e^{x}$ (4) $\frac{x^4}{24}e^{x}$

Set Code :	T2
Booklet Code :	A

PHYSICS 51. Two quantities A and B are related by the relation A/B = m where m is linear mass density and A is

force. The dimensions of B will be

	(1)	same as that of latent heat				same as that o	c as that of pressure				
	(3)	same as that of	same as that of work				same as that of momentum				
52.	The	dimensional for	mula	of capacitance in	terms	of M. L. Tand	I is				
		$[ML^2T^2l^2]$				$[M'L^2T^3I]$		$[M^{-1}L^{-2}]^4I^2]$			
53.	If I,	m and n are the	directi	on cosines of a v	ector.	then					
	(1)	l+m+n=1	(2)	$l^2 + m^2 + n^2 = 1$	(3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	linn = 1			
54.	The	angle between i-	+j and	j+k is							
	(1)	0°	(2)	90°	(3)	45°	(4)	60°			
55.	5 ms	$\frac{1}{\sqrt{2}}$ ms ⁻² towards	he ave	erage acceleration th-west	(2)	zero	2	the velocify changes to			
	(3)	2 ms toward	snorth	1)	(4)	√2 ms² towa	rds no	th-cast			
56.	The linear momentum of a particle varies with time t as $p = a+bt+ct^2$ which of the following is correct?										
	(1)	Force varies wi	th tim	e in a quadratic m	anne	r.		50			
	(2)	Force is time-d									
	(3)	The velocity of	the pa	article is proporti	onal	to time.					
	(4)			the particle is pro							
57.		ell of mass m moving with a velocity v suddenly explodes into two pieces. One part of mass									

10-A

Set Code	:	T2
Booklet Code	:	A

								Dookiet Code	·A		
58.	The	velocity of a	freely fal	ling body afte	er 2s is						
	(1)	9.8 ms ⁻¹	(2)	10.2 ms ⁻¹	(3)	18.6 ms ⁻¹	(4)	19.6 ms ⁻¹			
59.				re fired in all o bullets will sp		s with the same	e speed t	. The maximum	n area or		
	(1)	$\frac{\pi u^2}{g^2}$	(2)	$\frac{\pi u^4}{g^2}$	(3)	$\frac{\pi u^2}{g^4}$	(4)	$\frac{\pi u}{g^4}$			
60.						m, moving wit the road is μ, v		d v along a leve	l road, î		
	(1)	$\frac{v^2}{2\mu g}$	(2)	$\frac{v^2}{\mu g}$	(3)	$\frac{v^2}{4\mu g}$	(4)	$\frac{v}{2\mu g}$			
61.		en a bicycle is that it acts	in motio	n, the force o	f friction	n excreted by t	he grour	nd on the two v	heels is		
	(1)	In the backw	ard direc	tion on the fro	nt whee	and in the for	ward dire	ection on the rea	ar wheel		
	(2)) In the forward direction on the front wheel and in the backward direction on the rear wheel									
	(3)	In the backward direction on both the front and the rear wheels									
	(4)	In the forward direction on both the front and the rear wheels									
52.	In a	perfectly inela	astic colli	sion, the two	bodies						
	(1)	strike and ex	piode		(2)	explode with	out striki	ng			
	(3)	implode and	explode		(4)	explode with combine and	move to	gether			
3.	Und		f a consta	ant force, a pa	rticle is	experiencing a	constan	t acceleration,	then the		
	(1)	zero			(2)	positive					

(3) negative

(4) increasing uniformly with time

Set Code :	T2
Booklet Code :	A

64.	Consider	the	following	two statements:	

Linear momentum of a system of particles is zero.

Kinetic energy of a system of particles is zero.

Then

	IVIII 12 ICO 15			
(1)	A implies	D C.	D :	
111	75 minplies	DO	15 Im	DHCS A

(2) A does not imply B & B does not imply A

A implies B but B does not imply A

(4) A does not imply B but B implies A

65. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a height of 40 m? (Given g = 10 ms-2)

(I) 4s

(2) 5s

(3) 8s

(4) 10s

66. If a spring has time period T, and is cut into n equal parts, then the time period will be

(1) $T\sqrt{n}$ (2) $\frac{T}{J_n}$

(3) nT

67. When temperature increases, the frequency of a tuning fork

- (1) increases
- (2) decreases
- (3) remains same
- (4) increases or decreases depending on the materials

68. If a simple harmonic motion is represented by $\frac{d^2x}{dy^2} + \alpha x = 0$, its time period is

(1) $2\pi\sqrt{\alpha}$

(2) 2πα.

(3) $\frac{2\pi}{\sqrt{g}}$ (4) $\frac{2\pi}{g}$

69. A cinema hall has volume of 7500 m3. It is required to have reverberation time of 1.5 seconds. The total absorption in the hall should be

(1) 850 w-m²

(2) 82.50 w-m²

(3) 8.250 w-m²

(4) 0.825 w-m²

Set Code :	T2
Booklet Code :	

70.	To a	bsorb the se	ound in a ha	II which o	f the followi	ing are used				
		(1) Glasses, stores				Carpets, cu				
	200	Polished			(4)	Platforms				
71.	IfN	represents	avagadro's	number, ti	nen the numb	er of molec	ules in 6 gr	n of hydrog	en at NTP is	
		2N			(3)			N/6		
72.	The	mean trans	lational kir	etic energ	y of a perfec	t gas molec	ule at the te	emperature	TK is	
	(1)	$\frac{1}{2}kT$	(2)	kT	(3)	$\frac{3}{2}kT$	(4)	2kT		
73.	The	amount of	heat given	o a body v	which raises	its temperat	ure by 1°C			
	(1) water equivalent					thermal heat capacity				
		specific heat			(4)	temperature gradient				
74.	During an adiabatic process, the pressure of a gas is found to be proportional to the cube of it absolute temperature. The ratio Cp/Cv for gas is									
	(1)	3 .	(2)	4 3	(3)	2	(4)	$\frac{5}{3}$		
75.	Cla	dding in the	optical fib	er is main	ly used to					
	(1)	to protect	the fiber f	rom mech	anical stress	es				
	(2)	200 CENTED TO THE CONTROL OF THE SECRET OF THE CONTROL OF THE CONT								
	(3)				anical streng	gth				
	(4)				omagnetic g					

Set Code : T2

Booklet Code : A

Doublet Court

76.	The valency electronic configuration of Phosphorous atom (At.No. 15) is										
		3s ² 3p ³		3s1 3p3 3d1		$3s^2 3p^2 3d^1$		3s' 3p ² 3d	2		
77.	And	element 'A' of A	t.No.12	2 combines with	an ele	ment 'B' of At.N	o.17. T	The compou	nd formed	i	
	(1)	covalent AB	(2)	ionic AB ₂	(3)	covalent AB ₂	(4)	ionic AB			
78.	The	number of neut	rons p	resent in the ato	om of 56	Ba ⁽³⁾ is					
	(1)	56	(2)	137	(3)	193	(4)	81			
79.	Hyd	rogen bonding	in wate	er molecule is re	esponsi	ble for		^			
	(1)	decrease in its				increase in its	degree	of ionizati	on		
	(3)	increase in its		(C)	(4)	decrease in its	boilin	g point			
80.	In th	ne HCl molecule	the b	onding between	hvdro	gen and chlorine	is				
		purely covaler		ATT 0.00 NO.00		polar covalent		complex of	coordinate		
81.	Pota	ssium metal an	d potas	sium ions							
	(1)	both react with	water		(2)	have the same	numbe	er of proton	s		
	(3)	both react with	chlor	ine gas	(4)	have the same electronic configuration					
82.	stan	dard flask. 10 ml	ofthis	solution were p	ipetted	water and the so out into another i	flask ar	nd made up	with distill	ec	
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M			
83.	Con	centration of a	1.0 M s	solution of pho	sphoric	acid in water is					
	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N			
84.	Whi	ch of the follow	ing is	a Lewis acid?							
	(1)	Ammonia	N. Pal		(2)	Berylium chlo	ride				
	(3)	Boron trifluor	ide		(4)	Magnesium ox	ide				
		WWW	. ma	anare	SU	ilts.	CO	.in			

CHEMISTRY

								Set C	ode: T2	
								Booklet Co	ode : A	
35.	Whi	ch of the follow	ving co	nstitutes the con	npone	nts of a buffer	solution	?		
	(1)			nd potassium hy						
	(2)	Sodium aceta	te and a	cetic acid						
	(3)	Magnesium su	Iphate	and sulphuric ac	id					
	(4)	Calcium chlor	ride and	d calcium acetate	:					
86.	Whi	ch of the follow	ving is	an electrolyte?						
		Acetic acid	(2)		(3)	Urea	(4)	Pyridine		
87.		culate the Stand $cu/Cu^{-2} = (-) 0$.		of the cell, Co	I/Cd*2	//Cu+2/Cu give	n that F	O Cd/Cd*2 =	= 0.44V and	
		(-) 1.0 V		1.0 V	(3)	(-) 0.78 V	(4)	0.78 V	*	
88.	A solution of nickel chloride was electrolysed using Platinum electrodes. After electrolysis, (1) nickel will be deposited on the anode (2) Cl ₂ gas will be liberated at the cathode									
	(1)	nickel will be	deposi	ted on the anode	(2)	Cl, gas will b	e libera	ted at the ca	thode	
	(3)	H, gas will be	liberat	ed at the anode	(4)	nickel will be	deposi	ted on the c	athode	
89.	Whi	ch of the follow	ving me	etals will undergo				72.1		
	(1)	Cu	(2)	Li	(3)	Zinc	(4)	Iron		
90.			ving ca	nnot be used for						
	100	Ozone				Calcium Oxy		0		
	(3)	Potassium Ch	loride		(4)	Chlorine water	er			
91.		ater sample sho		to contain 1.20 m e equivalent is	ng/litr	e of magnesiun	n sulpha	ite. Then, its	hardness in	
		1.0 ppm	(2)		(3)	0.60 ppm	(4)	2.40 ppm		
92.	Sod	a used in the L-	S proce	ess for softening	of wa	ter is, Chemica	illy.			
	(1)	sodium bicarl	onate			sodium carbo				
	(3)	sodium carbo	nate		(4)	sodium hydro	oxide (4	0%)		
93.	The	process of cem	entatio	n with zinc powe						
	(1)	sherardizing	(2)	zincing	(3)	metal claddin	g (4)	electropla	ting	

Set Code :	T2
Booklet Code :	A

										_
94.	Ca	rrosion of a met	al is fas	test in						
	(1)	rain-water	(2)	acidulated wa	ater (3)	distilled water	(4)	de-i	onised wa	ater
95.	W	nich of the follow	ving is	a thermoset po	olymer'	?				
	(1)		4		(2)					
	(3)	Polythene			(4)		ehyde	resin		
96.	Che	emically, neopre	ne is							
	(1)	polyvinyl benz	zenc		(2)	polyacetylene				
	(3)	polychloropre	ne		(4)		liene			
97.	Vul	canization involv	ves heat	ing of raw rub	ber with	h				
		selenium elem			(2)		hur			
	(3)	a mixture of Se	e and el	emental sulph	ur (4)	a mixture of se		and s	ulphur di	oxide
98.	Petr	ol largely conta	ins						•	
		a mixture of un		ed hydrocarbo	ons C	C.				
		a mixture of be								
		a mixture of sa				S.,				
		a mixture of sa								
9.	Whi	ch of the follow	ing gase	es is largely re	sponsil	ble for acid-rain?				
	(1)			4 5 6		CO, & water va				
	(3)	CO, & N,				N ₂ & CO ₂	********			
00.	BOD	stands for								
	(1)	Biogenetic Oxy	gen De	mand	(2)	Biometric Oxyg	en De	mand		
	(3)	Biological Oxy	gen Der	mand	(4)	Biospecific Oxy			i	

Set Code :	T2
Booklet Code :	A

CERAMIC TECHNOLOGY

01.	Whi	ch of the follow	ing is	not a member o	f'Beac	h Sand Mineral	s'?		
	(1)	Zircon			(2)	Sillimanite			
	(3)	Andalusite			(4)	Rutile			
02.	The	presence of Wa	llaston	ite in a cerami	comp	osition leads to	:		
	(1)	Low moisture	expans	sion	(2)	Reduced dryir	ng and f	iring shrinkage	
	(3)	High Green and	d fired	strength	(4)	All of the above	ve		
03.	The	crystal structure	of Ba	ddeleyite is:					
	(1)	Monoclinic			(2)	Cubic			
	(3)	Tetragonal			(4)	Orthorhombic	3		
04.	The	Fuller's earth is							
	(1)	Kaolinite			(2)	Montmorrilor	nite		
	(3)	Mica			(4)	Diatomaceous	s earth		
05.	Lim	e stone is used in	n the n	nanufacture of				180	
	(1)	cement			(2)	Silica Refract	ory		
	(3)	Soda-Lime-Sil	ica Gl	ass	(4)	All of the above	ve		
06.	Whi	ch of the follow	ing rav	v material is To	xic?				
	(1)	Pyrophillite	(2)	Asbestos	(3)	Vermiculite	(4)	Chlorite	
07.	Mus	kovite is also kn	own a	s					
	(1)	White Mica	(2)	Black Mica	(3)	Red Mica	(4)	Brown Mica	

108.	Wh	at is the position of	ofAn	dhra Pradesh in	minera	d wealth?		
	(1)	1	(2)	3	(3)	2	(4)	10
109.	Raji	mahal is associate	d wit	h which minera	1?			
	(1)	China Clay	(2)	Ball Clay	(3)	Pyrophillite	(4)	Vermiculite
110.	Pota	ash Feldspar is als	so kno	own aş	5			
	(1)	Orthoclase	(2)	Plagioclase	(3)	Pegmatite	(4)	Soda Feldspar
111.	Che	mical formula of	Fluo	rspar is				
	(1)	CaF ₂	(2)	Ca SiF ₂	(3)	CaCl ₂	(4)	SiO ₂
112.	Larg	gest Bauxite depo	sits a	re available in v	vhich I	District of A.P.		
	(1)	Visakhapatnam	(2)	Krishna	(3)	Nellore	(4)	Chittoor
13.	Whi	ch of the following	ng is	used as a Binde	r?			
	(1)	Dextrin			(2)	Colex		
	(3)	Starch			(4)	All of the abov	e	
14.	Whi	ch of the following	ng sta	tements is wron	ng?			
	(1)	Formula of Talc	is 3N	MgO ₄ SiO ₂ H ₂ O				
	(2)				of hard	lness		
	(3)	Tale is largely u	sed f	or making Cord	lierite c	eramics		
	(4)	None of the abo	ve					
15.	Mol	ecular formula of	Kao	linite is				
	(1)	ALO, 2SiO, 2H	0,		(2)	Al ₂ O ₃ .4SiO ₂ .H ₂	O	
		Al ₂ O ₃ .SiO ₂ .				3Al ₂ O ₃ .2SiO ₂		

16.	Butt	on test is used	to deterr	nine				
	(1)	MOR			(2)	Compressive	strength	
	(3)	Fusibility			(4)	Porosity		
117.	Mor	noporossa is a				250 200720 7		
	(1)	Single fired f	floor tile		(2)	Double fired		
	(3)	Single fired v	wall tile		(4)	Double fired	wall tile	
118.	Gla	ss content of po	orcelain	bodies is in th	ne range	of		
	(1)	20-40%			(2)	50-80%		
	(3)	80-90%			(4)	10-20%		
119	Flo	or tile is a class	s of					
	(1)	Earthen ware			(2)			
	(3)	Hard Porcela	ain		(4)	Soft Porcela	in	
120	. The	addition of wh	hich Oxi	de in glaze co	mpositio	on creates a ma	tt surfac	c?
		ZnO		ZrO ₂	(3)	SnO ₂	(4)	РЬО
121	. Sto	neware is a				17,4200-74-217		
	(1)	Crude salt gl	lazed Por	rcelain made	from che	aper grade raw	materia	ı
	(2)	Thoroughly	vitrified	translucent w	are with	hard glaze		
	(3)			ware with so				
	(4)	Vitrified tran	nslucent	ware with so	ft glaze			4
122	2. So	ft porcelain is t	fired belo	ow.			0.00	
	(1)		(2)	1250°C	(3)	1100°C	(4)	1350°C

Set Code :	T2
Booklet Code :	A

123. Filter press is mainly used in the manufacture of	123.	Filter	press is	mainly	used i	n the	manufacture o
--	------	--------	----------	--------	--------	-------	---------------

- (1) Ceramic Insulator Manufacture
- (2) Cement Manufacture

(3) Glass Manufacture

- (4) Refractory Manufacture
- 124. Which of the following is the dunting of whiteware bodies?
 - (1) Deformation after firing
 - (2) Cracking due to thermally induced stress
 - (3) Rolling out of glaze after firing
 - (4) None of the above
- 125. While making powder for the manufacture of ceramic tiles by spray drying process, which of the following is used as deflocculant for slip preparation?
 - Sodium Silicate

- (2) Sodium Tannate
- (3) Tri-Sodium Phosphate
- (4) All of the above
- 126. Which of the following is an advantage for Lead compounds in Glaze:
 - (1) It gives higher brilliance due to higher refractive index
 - (2) It lowers the coefficient of expansion as compared to alkalies
 - (3) It lowers the modulus of elasticity
 - (4) All of the above
- 127. Consistometer is used
 - To determine specific gravity of slip
 - To determine viscosity of slip
 - (3) To determine flow of slip per minute
 - (4) None of the above

Book	Set Code :	T2 A
	30	
	1	
lor:		
ere		
rom 4 to 12%	6 which is ad	ded to
,		

129.	Whi	ch of the follow	ving is a	glaze defect					
	(1)	Hanging in hig							
	(2)	Laying down				У		40	
	(3)	In a normal ch	amber f	urnace by a b	ourner			- 1	
	(4)	None of the at	oove						
130.	For	coloured glazes	s, which	of the follow	wing facto	or affect the co	olor:		
	(1)	Colouring Age			(2)	Kiln Atmosp	here		75
	(3)	Firing temper	ature		(4)	All the above			
131		rder to keep the	glaze in	suspension	a small po	ertion ranging	from 4 to	12% which	is added to
	(1)	Borax			(2)	CaCO ₃			
	(3)	Alum			(4)	Clay			
132	. Oft	he following, w	which is	not used as a	raw mate	rial in Engobe	?		
	(1)	China Clay			(2)	Quartz			
	(3)	Rutile			(4)	Feldspar			
133	. Per	centage of Silic	a in a S	ilica brick is					
	(1)			90-92%	(3)	93-98%	(4)	80-85%	
134	Ma	ximum tempera	ature att	ainable for c	ontinuous	heating for S	iC heatin	g element is	
	(1)			1450°C	(3)	1600°C	(4)	1700°C	
					21-A	٦.			(CRT)
		WWW	· ma	anar	esu	ılts.	. CO	.ın	

(2) Alumina-SiC

(4) Cordierite

128. The kiln furniture to fire HT Porcelain insulators is made of

(1) Mullite

(3) Clay bonded SiC

Set Code :	T2
Booklet Code :	

135	. Th	e Aluminous Fir	re brick	contains					
	(1)	30-35% of A	1,0,		(2)	38-45% of A	1,0,		
	(3)	45-50% of A	1,0,		(4)		(5 F)		
136	. Me	lting point of C	orundu	m is					
	(1)	1723°C	(2)	2050°C	(3)	2300°C	(4)	1810°C	
137	. Sili	ca bricks show	good th	ermal shock re	esistance	e above			
		600°C		800°C		400°C	(4)	900°C	
138	. The	breaking or cra ing new surfac	cking o	f refractory brid bricks expos	ck in ser ed. This	vice, to such an	extent t	hat pieces are se	parated
	(1)	Erosion	(2)	Abrasion	(3)	Corrosion	(4)	Spalling	
139.	The	GROG is a							
	(1)	Pre-Calcined	raw ma	terial	(2)	Rejected raw	materia	1	
	(3)	Rejected alum	ina bric	ck	(4)	Rejected Mag	gnesite l	orick	
140.	Acc	ourse brick havi	ng an in	clined face fro	om whic	h an arc is spru	ng. This	definition appli	ies to
		Key brick			(2)				
	(3)	Skew Brick			(4)	Skull			
41.	Whi	ch of the follow	ing Re	fractory Oxide	s volatil	lizes in presenc	e of wa	ter?	
		BaO		BeO		Cr ₂ O ₃		ThO ₂	
42.	Ford	lry ramming ma	isses fo	r ling of Induc	tion Fur	naces, the bond	ling age	nt is	
		Ceramic bondi		2 1-10 A E-10 I I A 20		Plastic bondin			
	(3)	Both Ceramic	and Pla	stic bonding		None of the ab			

		(2)	The second second	(3)	ite on an avera 60%	(4)	70%
(1)	85%	(2)	8070	(0)	35.7.7.3	30.0	
44. Plu	mbago crucil	ble is					
(1)	Lead cruci	ble		10.74	Alumina cruc		
	Silicon Ca		cible	(4)	Graphite crue	cible	
45. Wh	ich of the fo	llowing i	s not a neutral	refractory	?		
	Chrome re			(2)	Carbon retra		
	Silicon ca			(4)	Zircon refra	ctory	
46 WI	nich type of r	efractory	do you recon	nmend for	Refractory lin	ing of °C	oke oven'?
(1)	55%fire c	lav brick	s	(2)	Magnesite b	ricks	
100000	Silica Brie			(4)	Carbon bloc	ks	
147 W	hich one of th	ne follow	ing do you us	e as a bind	er (2%) in Sili	ca brick r	nanufacture
(1				(2)	Zirconia		
				(4)	Magnesia		
(3) Lime						
		earth is n	nade of				
148. Bl	ast furnace h			(2)	Carbon bric	ks	
	ast fumace h	bricks (4	nade of 10% alumina)		Carbon bric		
148. Bl (1 (3	ast furnace h) Fire Clay) Zircon br	bricks (4 icks	0% alumina)	(4)	Vermiculite		
148. Bl (1 (3 149. D	ast furnace h) Fire Clay) Zircon br ead Burning	bricks (4 icks of Magne	0% alumina)	(4) ed at (°C) t	Vermiculite	bricks	1300-1450
148. Bl (1 (3	ast furnace h) Fire Clay) Zircon br ead Burning	bricks (4 icks of Magne	0% alumina)	(4) ed at (°C) t	Vermiculite emperature	bricks	1300-1450
148. Bl (1 (3 149. D	ast furnace h) Fire Clay) Zircon br ead Burning) 1200-13	bricks (4 icks of Magno 50 (7 s observe	esite is achieve 2) 800-950	(4) ed at (°C) t (3)	Vermiculite emperature 1600-1750	bricks (4)	1300-1450
148. Bl (1 (3 149. D	ast furnace h) Fire Clay) Zircon br ead Burning) 1200-13 bridge wall i	bricks (4 icks of Magno 50 (7 s observe	esite is achieve 2) 800-950 ed in	(4) ed at (°C) t (3)	Vermiculite emperature 1600-1750	(4)	1300-1450

151	. Wh	ich of the follow	ving is	not a comm	on type of	De-vitrifica	ation stone	?	
	(1)	Tridymite			(2)	Quartz			
	(3)	Cristoballite			(4)	Wallaston	ite		
152	. Cha	lcogenide glass	es are	used as:				65	
	(1)	Radiation shie	ld glas	SS	(2)	I.R.Transn	nitting Glas	SS	
	(3)	Photo chroma	tic Gla	155	(4)	Laser Glas	ss		
153.	Whi	ich of the follow	ing is	not used in p	hotosensi	tive glasses	?		
	(1)	Cu	(2)	Pb	(3)	Ag	(4)	Au	
154.	Whi	ich of the follow	ing ox	cide is not a g	lass form	er?			
	(1)	B ₂ O ₃	(2)	SiO ₂	(3)	GeO ₂	(4)	Cr ₂ O ₃	
155.	Whi	ich of the follow	ing is:	a nucleating	agent in a	Glass syster	m?		
	(1)	TiO ₂	(2)	CaF ₂	(3)	ZrO ₂	(4)	All of them	1
156.	Pyre	ex Glass contain							
	(1)	Boron Trioxide	e		(2)	Aluminiun	n oxide		
	(3)	Lead oxide			(4)	Zinc oxide			
57.	Gold	d-Ruby and Cop	per-Ru	iby glasses ar	re				
	(1)	Colloidal colo	r glass	es	(2)	Photo sens	sitive Glass	ses	
	(3)	Photochromic	Glass	es	(4)	None of th	iese		
58.	Whi	ch of the follow	ing sy	stem is called	d Crystal C	Glass?			
	(1)	K,O-PbO-SiO,			(2)	Na,O-PbO	-SiO ₂		
	(3)	K,O-BaO-SiO,			(4)	Na ₂ O-CaO	-SiO ₂		

159.	Opti	cal Glass contain	ning n	o Lead oxide is o	alled			
	(1)	Flint Glass			(2)	Opal Glass		
	(3)	Crown Glass			(4)	Crystal Glass		
160.	Tor	emove green tint	in the	e molten glass is	due to	the presence of	Š	
	(1)	MnO,			(2)	Chromic Oxide	8	
	(3)	Ferric Oxide			(4)	CoO		
161.	A cr	iteria for Glass f	ormal	tion is				
	(1)	A low nucleation	n rate	1				
	(2)	High Viscosity	at or	near the melting	point			
		The absence of				that can act as nu	cleati	ng agents
		All of the above						
162.	Whi	ch of the followi	ng is	not a refining age	ent?			
	(1)	As ₂ O ₃	(2)	Sb ₂ O ₃	(3)	NaNO ₃	(4)	TiO ₂
163.	Whi	ch of the follow	ing do	you use to impa	rt yell	ow color in Glas	s?	
	(1)	CdS	(2)	FeS	(3)	CuS	(4)	ZnS
164.	Whi	ich glass in the li	st belo	w given is not m	ade b	y pressing?		78
		Dishes		Tumblers		Lamp shell	(4)	T.V. Picture tube
165.	The	E-Glass, S-Glass	s and	Z-Glass are		×		
	(1)	Fibre Glass	(2)	Optical Glass	(3)	Sheet Glass	(4)	Toughened Glass
166.	The	average tempera	ture t	hat is maintained	in a C	lass Tank Furnac	ce is	
		1500-1550°C						1600-1650°C
		www.	. m	anare	ΪSί	ilts.	CO	.in (CRT)

								Set Co	de: T2
								Booklet Co	de : A
167	. Wi	nich of the foll	lowing is	s not used in r	efining of	Glass?			
		KNO,			(2)				
	(3)	As_2O_3			(4)	Bi ₂ O ₃			
168	. Wh	ich of the foll	owing is	used to cont	rol the set	ting of the c	ement?		
	(1)	Lime			(2)	Gypsum			
	(3)	Sodium Chl	oride		(4)	Silica			
169	. The	soundness of	cement	is measured b	у				
	(1)	Vicat Appara	atus		(2)	Blain's app	aratus		
	(3)	Autoclave e	xpansion	L	(4)	None of the	ese	8	
170	. Wh	ich of the folk	owing ph	ase occurs in	maximur	n amount in l	Portland of	cement?	
		C ₃ S		C ₂ S		C ₃ A		C ₄ AF	
171.	Whi	ich of the follo	wing is	Pozzolona?					
		Calcined Cla			(2)	Rice Husk			
	(3)	Fty Ash			(4)	All of the al	oove		
72.	Wha	at is the % of C	CaO in P	ortland cemer	nt?				
	(1)	40-45%	(2)	60-65%	(3)	50-55%	(4)	70-75%	
73.	How	much quantity inker?	of Gyps	um is added to	the clink	er during grin	ding as a s	set additive as p	percentage
	(1)	10-12%	(2)	4-6%	(3)	1-2%	(4)	15-20%	
74.	Wha	t is the percen	it of wat	er of consister	ncy of Po	rtland cemen	it?		
		40%		44%	(3)		(4)	34%	

175.	Whi	ch of the foll	owing ph	ases is the ca	ause for Fl	ash set of c	ement?		
	(1)	C ₃ S	(2)	C ₂ S	(3)	C ₃ A	(4)	C ₄ AF	
176.	Maj	or phase in hi	igh Alumi	na cement is					
	1.0	Calcium Ale			(2)	Tri Calciu	m Alumina	te	
	(3)	Tetra Calcio	um Alum i	no Ferrite	(4)	None of t	hese		
177.	Whi	ch Electrical	ceramics	has a high c	oefficient	of thermal	expansion'	?	
		Zircon Por			(2)	Cordierite			
		Low Loss S			(4)	Magnesiu	m Titanate		
178.	The	Fullerene ca	n be used	as					
	(1)	Semi condu	ector		(2)	Bio-Cera	mics		
	(3)	Super cond	uctor		(4)	Optical co	eramics		
179.	Who	ere is availab	ility of Fu	llerene disco	overed in A	A.P.?			
	(1)				(2)		bnagar Dist		
	(3)	Nellore Di	st		(4)	Prakasam	Dist		
180.	Whi	ch of the fol	lowing m	aterial can be	c used as a	Varistor?			
		Si_3N_4		SiC		BN	(4)	TiC	
181.	The	cubic Zircor	has						
	(1)	Flourite str	ructure		(2)	Perovskit	e structure		
		Wurtzite st			(4)	Ilmenite	structure		
182	Wh	ich of the fol	lowing ca	rbide has the	highest n	nelting poir	nt?		
		WC		ZrC		HfC	(4)	TiC	
	(.)		100	M042.025	200				

Set Code : T2

Booklet Code : A

183	.Whi	ch of the follow	ing is n	ot a Low Loss	cerami	c:		
	(1)	Steatite	(2)	Forsterite	(3)	Wallastonite	(4)	Rutile
184	. Wh	ich of the follow	ving is	not a type of c	eramic	- Metal seal:		
		Compression			(2)			
	(3)	Pin scal			(4)	Rod seal		
185	. Wh	ich of the follow	ving ma	iterial is know	n as cer	amic steel?		
		ZrO,	1000			ALO,		
	(3)	MgO				Cr ₂ O ₃	*	8
186	. Wh	ich of the follow	ing Fe	rrite is a perma	nent ma	ignet?		
		Ni-Zn Ferrite				Mg-Mn Ferrite	8	
	(3)	Barium Hexa	Ferrite		(4)	Co-Zn Ferrite		
187	The	Pyrometric con	es actu	ally does				
	(1)	Pyrometric me	ans me	asurement of	heat in	the kiln		
	(2)	do really meas	ure the	amount of hea	nt -			
	(3)	measure how i	nuch h	eat-energy the	ceramic	materials in the	kiln ha	ave absorbed
	(4)	none is right						
88.	Feld	spar is used exte	ensively	y in enamels as	s:			
	(1)	An Opacifier			(2)	A colorant		
	(3)	A raw material			(4)	An agent which	increa	ses refractive index
89.	The	ground coat ena	mel for	steel are melt	ed at a t	emperature rang	es of	
	(1)				(2)	700-750°C		
	(3)	900-950°C			(4)	1200-1250°C		

190.	The	adhesion of fired enamel to meta	al base is tes	sted by
		Scratch test	(2)	
	(3)	Impact test	(4)	Compression test
91.	The	enameling iron is		
	(1)	Low carbon steel	(2)	Cold rolled steel
	(3)	Both (a and b)	(4)	None of (a and b)
92.	Whi	ich of the following is used as an	Opacifier fo	or Silicate Glass Media?
	(1)	SnO ₂	(2)	ZrSiO ₄
	(3)	TiO ₂	(4)	All of these
93.	Acid	d resistance of enamel is tested w	ith	
	(1)	Hydrochloric acid	(2)	Citric acid
	(3)	Sulfuric acid	(4)	Tartaric acid
94.	Whi	ch is not adopted to improve the	chemical re	sistance of enamel:
	(1)	SiO, content is increased	(2)	TiO, content is decreased
	(3)	ZrO, is introduced	(4)	B ₂ O ₃ content is increased
95.	The	pouring of molten enamel in to v	vater to disi	ntegrate in to smaller particles is known as
	(1)	Quenching	(2)	Fritting
	(3)	Granulation	(4)	None of these
96.	Cob	alt Oxide is used in ground coat o	f enamel, be	ecause
,	(1)	gives Blue color	(2)	adherence to metal is excellent
	(3)	a and b are wrong	(4)	a and b are right
				22

				Booklet Code : A
197,		calories or thermal units contained i urnt is	n one uni	of a substance and released when the substance
	(1)	Thermal unit	(2)	Calorific Value
	(3)	Gross calorific value	(4)	None of these
198.	Whi	ich pyrometer do you use to measur	re a tempe	erature of 1200°C
	(1)	Optical Pyrometer	(2)	Radiation Pyrometer
	(3)	Thermo couple	(4)	Buller's rings
199.	Who	ere do we have largest deposits of lig	gnite in Ir	dia?
	(1)	Ranigunj, Jharkhand	(2)	Neyveli, Tamilnadu
	(3)	Ramagundam, Andhra Pradesh	(4)	None is right
200.	Whi	ch kiln do you use to fire floor tiles	in fast fi	ring technology?
33	(1)	Tank furnace	(2)	Roller Kiln
3	(3)	Rotary Kiln	(4)	Blast furnace