### COMPUTER SCIENCE AND ENGINEERING

INSTRUCTIONS TO CANDIDATES

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on
  the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet, BESIDES WRITING,
  THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE
  HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE
  SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- 2. Immediately on opening this Question Paper Booklet, check:
  - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
  - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- Use of Calculators, Mathematical Tables and Log books is not permitted.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- 7. One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate:
  - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
  - Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
  - (c) Adopts any other malpractice.
- Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination half candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

(CSE)

Note: (1) Answer all questions.

- (2) Each question carries I mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.

### MATHEMATICS

If 
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then  $A^4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$  (2) 91 (3) 271 (4) 81

If 
$$A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$$
 is a skew symmetric matrix, then the value of x is

(1) 1 (2) 2 (3) 3 (4)

What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is  $3\times3$ 

(1) 64 (2) 268 (3) 512 (4) 256

If 
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then  $|A| =$ 

(1) 1 (2) 2 (3) 3 (4)

- 5. The solution of a system of linear equations 2x y + 3z = 9, x + y + z = 6, x y + z = 2 is
  - (1) x = -1, y = -2, z = -3
- (2) x = 3, y = 2, z = 1
- (3) x = 2, y = 1, z = 3
- (4) x = 1, y = 2, z = 3
- 6. If  $\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x ai}$  then  $A = \frac{A}{x ai}$ ,  $B = \frac{A}{x ai}$ 
  - (1)  $\frac{1}{2ai}$ ,  $-\frac{1}{2ai}$  (2)  $-\frac{1}{2ai}$ ,  $\frac{1}{2ai}$  (3)  $\frac{1}{ai}$ ,  $-\frac{1}{ai}$  (4)  $-\frac{1}{ai}$ ,  $\frac{1}{ai}$

- 7. If  $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$  then  $\sum_{i=1}^3 A_i$  is equal to

- 8. The period of the function  $f(x) = |\sin x|$  is
  - (1) n

- (3)  $3\pi$  (4)  $4\pi$
- 9. If A+B=45°, then (1-cotA) . (1-cotB) is
  - (1) 1
- (2) 0

- The value of sin 78° + cos 132° is

  - (1)  $\frac{\sqrt{5}+1}{4}$  (2)  $\frac{\sqrt{5}+1}{2}$  (3)  $\frac{\sqrt{5}-1}{2}$

- 11. If  $A+B+C=\pi$ , then  $\sin 2A + \sin 2B + \sin 2C =$ 
  - 4 cosA sinB cosC

(2) 4 sinA cosB sinC

(3) 4 cosA cosB cosC

- (4) 4 sinA sinB sinC
- The principal solution of Tanx = 0 is
- (1)  $x = n\pi, n \in \mathbb{Z}$

(2) x=0

(3)  $x=(2n+1) \pi/2, n \in \mathbb{Z}$ 

(4)  $x = n\pi + \alpha, n \in \mathbb{Z}$ 

| 13. | The   | value of Tan-1 (2                           | 2) + Ta                                 | n-1 (3) is           |          |                       |           |                      |           |
|-----|-------|---------------------------------------------|-----------------------------------------|----------------------|----------|-----------------------|-----------|----------------------|-----------|
|     | (1)   | $\frac{\pi}{4}$                             | (2)                                     | $\frac{\pi}{2}$      | (3)      | $\frac{\pi}{3}$       | (4)       | $\frac{3\pi}{4}$     |           |
|     |       |                                             | are concept                             | angen success un     |          |                       |           |                      |           |
| 14. | If th | e sides of a righ                           |                                         |                      |          |                       |           |                      |           |
|     | (1)   | 1:2:3                                       | (2)                                     | 2:3:4                | (3)      | 3:4:5                 | (4)       | 4:5:6                |           |
| 15. | The   | value of r.r <sub>1</sub> .r <sub>2</sub> . | r, is                                   |                      |          |                       |           |                      |           |
|     | (1)   | $\Delta^2$                                  | (2)                                     | Δ-2                  | (3)      | Δ-3                   | (4)       | $\Delta^4$           |           |
|     | 1     | 1 1                                         |                                         |                      |          |                       |           |                      |           |
| 16. | r1    | $\frac{1}{r^2} + \frac{1}{r^3} =$           |                                         |                      |          |                       |           |                      |           |
|     | (1)   | 1                                           | (2)                                     | $\frac{1}{2r}$       | (3)      | 1<br>R                | (4)       | $\frac{1}{\Delta}$   |           |
|     |       |                                             |                                         |                      |          |                       |           |                      |           |
| 17. | If a  | =6, b=5, c=9, th                            | en the                                  | value of angle       | Ais      | No.                   |           |                      |           |
|     | (1)   | cos-1 (2/9)                                 | (2)                                     | cos-1 (2/5)          | (3)      | cos-1 (7/9)           | (4)       | cos-1 (1/3)          |           |
|     |       |                                             |                                         | bir 1 die            |          |                       |           |                      |           |
| 18. |       | polar form of c                             | 101111111111111111111111111111111111111 |                      |          | -                     | 7/03/52/7 | -                    |           |
|     | (1)   | $\sqrt{2}e^{-m/4}$                          | (2)                                     | $\sqrt{2}e^{i\pi/4}$ | (3)      | $\sqrt{2} e^{i\pi/2}$ | (4)       | √2 e <sup>-m/2</sup> |           |
| 19. | 161   | $\omega$ , $\omega^2$ be the cul            | be roo                                  | ts of unity, then    | the val  | ue of 2"3.2"5.2       | o is      |                      |           |
|     | (1)   |                                             | (2)                                     |                      | (3)      | 1                     | (4)       | 0                    |           |
|     |       |                                             | -                                       |                      |          |                       |           |                      |           |
| 20. | The   | intercept made                              | on X-                                   | axis by the circ     | le x²+y² | +2gx+2fy+c =          | 0 is      |                      |           |
|     | (1)   | $\sqrt{g^2-c}$                              | (2)                                     | $\sqrt{f^2-c}$       | (3)      | $2\sqrt{g^2-c}$       | (4)       | $2\sqrt{f^2-c}$      |           |
| 21. |       | ne end of the di                            | ameter                                  | of the circle x2     | +y2-5x   | -8y+13 = 0 is (       | (2, 7), t | hen the other        | end of th |
|     |       | neter is                                    | (2)                                     | (1.3)                | (3)      | (-3, -1)              | (4)       | (-1, -3)             |           |
|     | (1)   | (3, 1)                                      | (2)                                     | (1, 3)               | (3)      | (-3, -1)              | (4)       |                      |           |

22. The radius of the circle 
$$\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$$
 is

- (1) 2c

- (4) c

23. The parametric equations of the ellipse 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 are

- (1)  $x = a \sec \theta, y = b \tan \theta$
- (2)  $x = b \sin\theta, y = a \cos\theta$
- (3)  $x = a \cos\theta$ ,  $y = b \sin\theta$
- (4)  $x = a \csc\theta$ ,  $y = b \cot\theta$

24. The equation of the directrix of the parabola 
$$2x^2 = -7y$$
 is

- (2) 8y-7=0 (3) 7y+8=0

25. The condition for a straight line 
$$y = mx + c$$
 to be a tangent to the hyperbola  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  is

- (1) c = a/m (2)  $c^2 = a^2m^2 b^2$  (3)  $c^2 = a^2m^2 + b^2$  (4)  $c^2 = a/m$

26. 
$$\lim_{x \to 1} \frac{\sqrt{5x-4} - \sqrt{x}}{x-1}$$
 is

- (1) 3
- (2) 2

- (1)  $\pi/2$  (2)  $\pi/4$  (3)  $i\pi/2$  (4)  $i\pi/4$

28. 
$$\frac{d}{dx}[\log_7 X] =$$

- (1)  $\frac{1}{x}$  (2)  $X \log_7^6$  (3)  $\frac{1}{x} \log_6^7$  (4)  $\frac{1}{x} \log_7^6$

29. 
$$\frac{d}{dx}[2\cosh x] =$$

- (1)  $\frac{e^x + e^{-x}}{2}$  (2)  $\frac{e^x e^{-x}}{2}$  (3)  $e^x + e^{-x}$  (4)  $e^x e^{-x}$

www.manaresults.co.in

$$30. \quad \frac{d}{dx} \left[ \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \right] =$$

(1) 
$$\frac{1}{1+x^2}$$

(2) 
$$\frac{-1}{1+x^2}$$

(1) 
$$\frac{1}{1+x^2}$$
 (2)  $\frac{-1}{1+x^2}$  (3)  $\frac{2}{1+x^2}$  (4)  $\frac{-2}{1+x^2}$ 

(4) 
$$\frac{-2}{1+x^2}$$

31. If 
$$x = at^2$$
,  $y = 2at$ , then  $\frac{dy}{dx} =$ 

(1) 
$$\sqrt{\frac{y}{x}}$$
 (2)  $\sqrt{\frac{x}{a}}$  (3)  $\sqrt{\frac{a}{x}}$  (4)  $\sqrt{\frac{x}{y}}$ 

(2) 
$$\sqrt{\frac{x}{a}}$$

(3) 
$$\sqrt{\frac{a}{x}}$$

(4) 
$$\sqrt{\frac{x}{y}}$$

32. The derivative of  $e^x$  with respect to  $\sqrt{x}$  is

(1) 
$$\frac{2\sqrt{x}}{e^x}$$

$$(1) \quad \frac{2\sqrt{x}}{c^x} \qquad (2) \quad 2\sqrt{x}e^x$$

$$(3) \quad \frac{e^x}{2\sqrt{x}}$$

33. The equation of the normal to the curve  $y = 5x^4$  at the point (1, 5) is

(1) 
$$x + 20y = 99$$

(1) 
$$x + 20y = 99$$
 (2)  $x + 20y = 101$  (3)  $x - 20y = 99$  (4)  $x - 20y = 101$ 

$$x - 20y = 101$$

34. The angle between the curves  $y^2 = 4x$  and  $x^2 + y^2 = 5$  is

(1) 
$$\frac{\pi}{4}$$

(2) 
$$tan^{-1}(2)$$
 (3)  $tan^{-1}(3)$  (4)  $tan^{-1}(4)$ 

35. If 
$$u = x^3y^3$$
 then  $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$ 

(1) 
$$6(x^3+y^3)$$

(2) 
$$6x^3y^3$$

$$(4)$$
  $6y^3$ 

36.  $\left| \operatorname{cosec} x \, dx \right| =$ 

(1) 
$$\log(\csc x + \cot x) + C$$

(2) 
$$\log(\cot x/2) + C$$

(3) 
$$\log (\tan x/2) + C$$

(4) 
$$-\csc x.\cot x + C$$

37. 
$$\int_{0}^{\pi} \cos^{11} x \, dx =$$

- (1)  $\frac{256}{693}$  (2)  $\frac{256\pi}{693}$  (3)  $\frac{\pi}{4}$  (4)  $\frac{128}{693}$

38. 
$$\int f'(x)[f(x)]^n dx =$$

(1) 
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2)  $\frac{[f(x)]^{n+1}}{n+1} + C$  (3)  $n[f(x)]^{n-1} + C$  (4)  $(n+1)[f(x)]^{n+1} + C$ 

$$39. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$$

(1) 
$$Tan^{-1}(\sqrt{x+6})+C$$

(2) 
$$2Tan^{-1}(\sqrt{x+6})+C$$

(3) 
$$Tan^{-1}(x+7)+C$$

(4) 
$$2Tan^{-1}(x+7)+C$$

40. 
$$\int \tan^{-1} x \, dx =$$

(1) 
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$
 (2)  $\frac{1}{1+x^2} + C$ 

(2) 
$$\frac{1}{1+x^2}+0$$

(3) 
$$x^2 Tan^{-1}x + C$$

(4) 
$$x.Tan^{-1}x - \log \sqrt{1+x^2} + C$$

41. 
$$\int \frac{dx}{1+e^{-x}} =$$

(1) 
$$\log(1+e^{-x})+C$$

42. 
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin |x| \, dx =$$

- (2) 1

www.manaresults.co.in

- 43. Area under the curve  $f(x) = \sin x$  in  $[0, \pi]$  is
  - (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- 44. The order of  $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} 3y = x$  is
  - (1) 1
- (2) 4
- (3) 3

- 45. The degree of  $\left[ \frac{d^2 y}{dx^2} + \left( \frac{dy}{dx} \right)^2 \right]^{\frac{3}{2}} = a \frac{d^2 y}{dx^2}$  is
  - (1) 4
- (3) 1
- The family of straight lines passing through the origin is represented by the differential equation
  - (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0

- 47. The differential equitation  $\frac{dy}{dx} + \frac{ax + hy + g}{hx + hy + f} = 0$  is called
  - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- 48. The solution of differential equation  $\frac{dy}{dx} = e^{-x^2} 2xy$  is
  - (1)  $y e^{-x^2} = x + c$  (2)  $y e^x = x + c$  (3)  $y e^{x^2} = x + c$

- 49. The complementary function of  $(D^3+D^2+D+1)y=10$  is
  - (1)  $C_1 \cos x + C_2 \sin x + C_1 e^{-x}$
- (2)  $C_1 \cos x + C_2 \sin x + C_4 e^x$
- (3) C, + C, cosx + C, sinx
- (4)  $(C_1 + C_2x + C_3x^2)e^x$
- 50. Particular Integral of  $(D-1)^4y = e^x$  is
- (2)  $\frac{x^4}{24}e^{-x}$  (3)  $\frac{x^4}{12}e^x$  (4)  $\frac{x^4}{24}e^x$

Set Code : 12 Booklet Code : A

# PHYSICS 51. Two quantities A and B are related by the relation A/B = m where m is linear mass density and A is

(2) same as that of pressure

(3) [M-L3T3]]

(4) same as that of momentum

(4) [M-1L-2T4]2]

force. The dimensions of B will be (1) same as that of latent heat

52. The dimensional formula of capacitance in terms of M, L, T and I is

(2) [ML-2T4]2]

53. If L m and n are the direction cosines of a vector, then

(3) same as that of work

(1) [ML<sup>2</sup>T<sup>2</sup>I<sup>2</sup>]

| $\frac{1}{\sqrt{2}}$ ms <sup>-2</sup> toward $\frac{1}{2}$ ms <sup>-2</sup> toward linear momentu                                               | (2) 90° g eastwards with The average accel rds north-west | a velocity o<br>leration in the (2)                                                            | nis time is                                                                                                                                                     | (4) 60°<br>seconds the velocity<br>ards north-east                            | y changes to                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| article is moving $r^{-1}$ northwards. The sum of $r^{-1}$ $\sqrt{2}$ ms <sup>-2</sup> toward $r^{-2}$ ms <sup>-2</sup> toward linear momentum. | g eastwards with<br>The average accel<br>ds north-west    | a velocity o<br>leration in the (2)                                                            | f 5 ms <sup>-1</sup> . In 10<br>his time is<br>zero                                                                                                             | seconds the velocity                                                          | y changes to                                                                                                                                                                                                                                      |
| $\frac{1}{\sqrt{2}}$ ms <sup>-2</sup> toward $\frac{1}{2}$ ms <sup>-2</sup> toward linear momentu                                               | the average acceleds north-west                           | (2)                                                                                            | nis time is                                                                                                                                                     |                                                                               | y changes to                                                                                                                                                                                                                                      |
| $\frac{1}{2}$ ms <sup>-2</sup> toward                                                                                                           | s north                                                   | (4)                                                                                            | 500                                                                                                                                                             | ards north-east                                                               |                                                                                                                                                                                                                                                   |
| $\frac{1}{2}$ ms <sup>-2</sup> toward                                                                                                           | s north                                                   | (4)                                                                                            | 500                                                                                                                                                             | ards north-east                                                               |                                                                                                                                                                                                                                                   |
| linear momentu                                                                                                                                  |                                                           |                                                                                                | $\frac{1}{\sqrt{2}}$ ms <sup>-2</sup> tow                                                                                                                       | ards north-east                                                               |                                                                                                                                                                                                                                                   |
|                                                                                                                                                 | m of a namiala su                                         |                                                                                                |                                                                                                                                                                 |                                                                               |                                                                                                                                                                                                                                                   |
| ect?                                                                                                                                            | m or a particle va                                        | aries with ti                                                                                  | $\operatorname{me} t \operatorname{as} p = a + t$                                                                                                               | bt+ct2 which of the                                                           | following i                                                                                                                                                                                                                                       |
| Force varies wi                                                                                                                                 | ith time in a quad                                        | ratic manne                                                                                    | er.                                                                                                                                                             |                                                                               |                                                                                                                                                                                                                                                   |
| Force is time-d                                                                                                                                 | lependent.                                                |                                                                                                |                                                                                                                                                                 |                                                                               |                                                                                                                                                                                                                                                   |
| The velocity of                                                                                                                                 | f the particle is p                                       | roportional                                                                                    | to time.                                                                                                                                                        |                                                                               |                                                                                                                                                                                                                                                   |
| The displaceme                                                                                                                                  | ent of the particle                                       | e is proport                                                                                   | ional to t.                                                                                                                                                     |                                                                               |                                                                                                                                                                                                                                                   |
|                                                                                                                                                 |                                                           |                                                                                                |                                                                                                                                                                 | to two pieces. One                                                            | part of mass                                                                                                                                                                                                                                      |
| ν                                                                                                                                               | (2) 2v                                                    | (3)                                                                                            | 3v/4                                                                                                                                                            | (4) 4v/3                                                                      |                                                                                                                                                                                                                                                   |
|                                                                                                                                                 |                                                           | 10-A                                                                                           |                                                                                                                                                                 |                                                                               |                                                                                                                                                                                                                                                   |
|                                                                                                                                                 | The displacem<br>ell of mass m me<br>emains stations      | The displacement of the particle of mass m moving with a velo remains stationary. The velocity | The displacement of the particle is proported of mass $m$ moving with a velocity $\nu$ sudde temains stationary. The velocity of the other $\nu$ (2) $2\nu$ (3) | remains stationary. The velocity of the other part is $v$ (2) $2v$ (3) $3v/4$ | The displacement of the particle is proportional to t.  ell of mass $m$ moving with a velocity $\nu$ suddenly explodes into two pieces. One remains stationary. The velocity of the other part is $ \nu = (2)  2\nu = (3)  3\nu/4 = (4)  4\nu/3 $ |

| Set Code :<br>Booklet Code : | T2 |
|------------------------------|----|
| Booklet Code :               | A  |

| 50  | The                                                                                             | velocity of a                                                                                               | freely fal                | ling body afte                       | r 2s is               |                                  |                      |                       |             |  |  |  |
|-----|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|-----------------------|----------------------------------|----------------------|-----------------------|-------------|--|--|--|
| 36. | (1)                                                                                             | 9.8 ms <sup>-1</sup>                                                                                        | (2)                       | 10.2 ms <sup>-1</sup>                | (3)                   | 18.6 ms <sup>-1</sup>            | (4)                  | 19.6 ms <sup>-1</sup> | ×:          |  |  |  |
| 59. | A la                                                                                            | rge number o<br>ground on wh                                                                                | f bullets a<br>tich these | re fired in all o<br>bullets will sp | firections<br>read is | s with the same                  | speed a              | . The maximu          | m area on   |  |  |  |
|     | (1)                                                                                             | $\frac{\pi u^2}{g^2}$                                                                                       | (2)                       | $\frac{\pi u^4}{g^2}$                | (3)                   | $\frac{\pi u^2}{g^4}$            | (4)                  | $\frac{\pi u}{g^4}$   |             |  |  |  |
| 60. | The the                                                                                         | minimum sto                                                                                                 | opping dis<br>friction l  | tance for a car<br>between the ty    | of mass<br>res and t  | m, moving wi<br>the road is μ, v | th a spec<br>vill be | d v along a lev       | el road, if |  |  |  |
|     | (1)                                                                                             | $\frac{v^2}{2\mu g}$                                                                                        | (2)                       | $\frac{v^2}{\mu g}$                  | (3)                   | $\frac{v^2}{4\mu g}$             | (4)                  | $\frac{v}{2\mu g}$    |             |  |  |  |
| 61. |                                                                                                 | that it acts                                                                                                |                           |                                      |                       | n excreted by                    | 55                   |                       |             |  |  |  |
|     | (1)                                                                                             |                                                                                                             |                           |                                      |                       | and in the for                   |                      |                       |             |  |  |  |
|     | (2) In the forward direction on the front wheel and in the backward direction on the rear wheel |                                                                                                             |                           |                                      |                       |                                  |                      |                       |             |  |  |  |
|     | (3) In the backward direction on both the front and the rear wheels                             |                                                                                                             |                           |                                      |                       |                                  |                      |                       |             |  |  |  |
|     | (4) In the forward direction on both the front and the rear wheels                              |                                                                                                             |                           |                                      |                       |                                  |                      |                       |             |  |  |  |
| 62. | In a perfectly inelastic collision, the two bodies                                              |                                                                                                             |                           |                                      |                       |                                  |                      |                       |             |  |  |  |
|     |                                                                                                 | strike and e                                                                                                |                           | Carrier Control Houge                | (2)                   | explode with                     | out strik            | ing                   |             |  |  |  |
|     |                                                                                                 | implode an                                                                                                  |                           |                                      | (4)                   | combine and                      | move to              | gether                |             |  |  |  |
| 63. |                                                                                                 | Under the action of a constant force, a particle is experiencing a constant acceleration, then the power is |                           |                                      |                       |                                  |                      |                       |             |  |  |  |
|     | (1)                                                                                             | zero                                                                                                        |                           |                                      | (2)                   | \$100 CONTRACTOR (1990)          |                      |                       |             |  |  |  |
|     | (3)                                                                                             | negative                                                                                                    |                           |                                      | (4)                   | increasing u                     | niformly             | with time             |             |  |  |  |
|     |                                                                                                 |                                                                                                             |                           |                                      |                       |                                  |                      |                       |             |  |  |  |

|     |      |               |            |                                           |           |                                           |                  | Set        | Code: T2       |  |
|-----|------|---------------|------------|-------------------------------------------|-----------|-------------------------------------------|------------------|------------|----------------|--|
|     |      |               |            |                                           |           |                                           |                  | Booklet    | Code : A       |  |
| 64. | Con  | sider the fol | lowing tw  | o statements:                             |           |                                           |                  |            |                |  |
|     | A:   | Linear mo     | mentum o   | f a system of p                           | articles  | is zero.                                  |                  |            |                |  |
|     | B:   | Kinetic en    | ergy of a  | system of partic                          | cles is 2 | ero.                                      |                  |            |                |  |
|     | The  | n             |            |                                           |           |                                           |                  |            |                |  |
|     | (1)  | A implies l   | B & B imp  | lies A                                    | (2)       | ) A does not imply B & B does not imply A |                  |            |                |  |
|     | (3)  | A implies I   | B but B do | es not imply A                            | (4)       | A does i                                  | not imply B t    | out B impl | lies A         |  |
| 55. |      | engine devel  |            | V of power. Ho<br>= 10 ms <sup>-2</sup> ) | w muc     | h time wi                                 | ll it take to li | ift a mass | of 200 kg to a |  |
|     | (1)  | 4s            | (2)        | 5s -                                      | (3)       | 8s                                        | (4)              | 10s        |                |  |
| 66. | Ifas | spring has ti | me period  | T, and is cut int                         | to n equ  | al parts, t                               | hen the time     | period wi  | ill be         |  |

(3) nT

67. When temperature increases, the frequency of a tuning fork

- (1) increases
- (2) decreases
- (3) remains same
- (4) increases or decreases depending on the materials

68. If a simple harmonic motion is represented by  $\frac{d^2x}{dy^2} + \alpha x = 0$ , its time period is

- (1)  $2\pi\sqrt{\alpha}$  (2)  $2\pi\alpha$  (3)  $\frac{2\pi}{\sqrt{\alpha}}$  (4)  $\frac{2\pi}{\alpha}$
- A cinema hall has volume of 7500 m<sup>3</sup>. It is required to have reverberation time of 1.5 seconds.
   The total absorption in the hall should be
  - (1) 850 w-m<sup>2</sup> (2) 82.50 w-m<sup>2</sup> (3) 8.250 w-m<sup>2</sup> (4) 0.825 w-m<sup>2</sup>

|     |        |                            |              |             |                     |                 |                | Set<br>Booklet | Code : T2      |
|-----|--------|----------------------------|--------------|-------------|---------------------|-----------------|----------------|----------------|----------------|
|     |        |                            |              | U aabiah o  | Etha fallowi        | no are used     |                |                |                |
| 70. |        |                            |              | ii wiiich o | f the followi       | Carpets, c      | urtains        |                |                |
|     | (1)    | Glasses, st<br>Polished st |              |             | 13.05               | Platforms       |                |                |                |
|     |        |                            |              |             |                     |                 |                |                |                |
| 71. | IfN    | represents a               | vagadro's    | number, ti  | nen the numb        | er of mole      | cules in 6 gr  | n of hydr      | ogen at NTP is |
|     |        | 2N                         | (2)          | 3N          | (3)                 | N               | (4)            | N/6            |                |
|     | 12.10  |                            |              |             |                     |                 |                |                | TVie           |
| 72. | The    | mean transl                | ational kin  | etic energ  | y of a perfec       | t gas mole      | cule at the te | emperatu       | re I K IS      |
|     | 022277 | $\frac{1}{2}kT$            | (2)          | LT          | (3)                 | $\frac{3}{2}kT$ | (4)            | 2kT            |                |
|     | (1)    | 2 "                        | (2)          | KI          | (3)                 | 2               | No.            | HOUR A         |                |
|     |        |                            |              |             | uhiah minan         | ite tempers     | ture by 1°C    |                |                |
| 73. |        |                            |              | o a body v  | which raises<br>(2) | thermal h       | eat capacity   |                |                |
|     | 300000 | water equi                 |              |             |                     |                 | ure gradient   |                |                |
|     | (3)    | specific he                | eat          |             | (4)                 | temperar        | <b>D</b>       |                |                |
| 74. | Dur    | ing an adiab               | atic proces  | ss, the pre | ssure of a ga       | s is found      | to be propo    | rtional to     | the cube of it |
|     | abse   | olute temper               | ature. The   | ratio Cp/   | Cv for gas is       |                 |                |                |                |
|     |        | 3                          | (2)          | 4           | (3)                 | 2               | (4)            | 5 3            |                |
|     | (1)    | 2                          | (2)          | 3           | (3)                 | 2               | (4)            | 3              |                |
| 75  | Cla    | dding in the               | ontical fib  | er is main  | ly used to          |                 |                |                |                |
| 120 | (1)    | to protect                 | the fiber f  | rom mech    | nanical stress      | ses             |                |                |                |
|     | (2)    |                            | the fiber f  |             |                     |                 |                |                |                |
|     | (3)    |                            | the fiber fi |             | gth                 |                 |                |                |                |
|     | (4)    |                            |              |             | romagnetic g        |                 |                |                |                |
|     |        |                            |              |             |                     |                 |                |                |                |
|     |        |                            |              |             |                     |                 |                |                |                |

Set Code : T2

Booklet Code : A

#### CHEMISTRY

|   | 76.  | The                              | valency electro                 | nic co  | nfiguration of l                  | Phosphe  | orous atom (At.)                        | No. 15           | ) is                                                                |        |  |  |
|---|------|----------------------------------|---------------------------------|---------|-----------------------------------|----------|-----------------------------------------|------------------|---------------------------------------------------------------------|--------|--|--|
|   |      | (1)                              | 3s <sup>2</sup> 3p <sup>3</sup> | (2)     | 3s1 3p3 3d1                       | (3)      | 3s² 3p² 3d¹                             | (4)              | 3s1 3p2 3d2                                                         |        |  |  |
|   | 77.  | An                               | element 'A' of A                | t.No.1  | 2 combines wit                    | h an ele | ment 'B' of At.N                        | 0.17.            | The compound for                                                    | ned is |  |  |
|   |      | (1)                              | covalent AB                     | (2)     | ionic AB <sub>2</sub>             | (3)      | covalent AB <sub>2</sub>                | (4)              | ionic AB                                                            |        |  |  |
|   | 78.  | The                              | number of neut                  | rons p  | resent in the ate                 | om of "  | Ba <sup>137</sup> is                    |                  |                                                                     |        |  |  |
|   |      |                                  | 56                              | (2)     | 137                               | 94       | 193                                     | (4)              | 81                                                                  |        |  |  |
|   | 79.  | Hyd                              | lrogen bonding                  | in wate | er molecule is r                  | esponsi  | ble for                                 |                  |                                                                     |        |  |  |
|   |      | (1)                              | decrease in its                 | freezi  | ng point                          | (2)      | increase in its degree of ionization    |                  |                                                                     |        |  |  |
|   |      | (3)                              | increase in its                 | boilin  | g point                           | (4)      | decrease in its                         | boilin           | g point                                                             |        |  |  |
|   | 80.  | In th                            | ne HCl molecule                 | , the b | onding between                    | n hydro  | gen and chlorine                        | is               |                                                                     |        |  |  |
|   |      | (1)                              | purely covaler                  | t (2)   | purely ionic                      | (3)      | polar covalent                          | (4)              | complex coordin                                                     | ate    |  |  |
|   | 81.  | Pota                             | ssium metal and                 | d notas | sium ions                         |          |                                         |                  |                                                                     |        |  |  |
|   | 5000 | (1)                              |                                 |         |                                   | (2)      | have the same                           | numbe            | er of protons                                                       |        |  |  |
|   |      | (3) both react with chlorine gas |                                 |         |                                   |          |                                         |                  | onic configuration                                                  | *      |  |  |
|   | 82.  | stand                            | dard flask. 10 ml               | of this | solution were p<br>on. The concen | oipetted | out into another f<br>of the sodium chl | lask ar<br>oride | made upto 100 m<br>nd made up with dis<br>solution now is<br>0.25 M |        |  |  |
| ġ | 83.  | Con                              | centration of a                 | .0 M    | solution of pho                   | sphoric  | acid in water is                        |                  |                                                                     |        |  |  |
|   |      | (1)                              | 0.33 N                          | (2)     | 1.0 N                             | (3)      | 2.0 N                                   | (4)              | 3.0 N                                                               |        |  |  |
| - | 84.  | Whi                              | ch of the follow                | ing is  | Lewis acid?                       |          | E                                       |                  |                                                                     |        |  |  |
|   |      | (1)                              | Ammonia                         | 0E0     |                                   | (2)      | Berylium chlor                          | ide              |                                                                     |        |  |  |
|   |      | (3)                              | Boron trifluor                  | ide     |                                   | (4)      | Magnesium ox                            | ide              |                                                                     |        |  |  |
|   |      |                                  |                                 |         |                                   | 14-A     |                                         |                  |                                                                     |        |  |  |
|   |      |                                  |                                 |         |                                   |          |                                         |                  |                                                                     |        |  |  |

| Set Code:      | <b>T2</b> |
|----------------|-----------|
| Booklet Code : | A         |

| 85. | Whi                                                                                                                                     | ch of the follow                             | ving co   | nstitutes the co | mponen     | ts of a buffer s                         | olution  | ?               |             |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------|------------------|------------|------------------------------------------|----------|-----------------|-------------|--|--|--|--|
|     | (1)                                                                                                                                     | Potassium chl                                | loride a  | nd potassium h   | ydroxide   | 3                                        |          |                 |             |  |  |  |  |
|     |                                                                                                                                         | (2) Sodium acetate and acetic acid           |           |                  |            |                                          |          |                 |             |  |  |  |  |
|     | (3)                                                                                                                                     |                                              |           | and sulphuric a  | cid        |                                          |          |                 |             |  |  |  |  |
|     | (4)                                                                                                                                     | Calcium chlo                                 | ride and  | l calcium aceta  | te         |                                          |          |                 |             |  |  |  |  |
| 86. | Whi                                                                                                                                     | ch of the follow                             | wing is   | an electrolyte?  | ě          |                                          |          |                 |             |  |  |  |  |
|     | (1)                                                                                                                                     | Acetic acid                                  | (2)       | Glucose          | (3)        | Urea                                     | (4)      | Pyridine        |             |  |  |  |  |
| 87. | Calc                                                                                                                                    | culate the Stan                              | dard en   | of the cell, (   | Cd/Cd+2/   | /Cu+2/Cu give                            | n that E | 0 Cd/Cd+2 =     | 0.44V and   |  |  |  |  |
| -   | Eº C                                                                                                                                    | $Cu/Cu^{+2} = (-) 0.$                        | 34 V.     |                  |            |                                          |          |                 |             |  |  |  |  |
|     |                                                                                                                                         | (-) 1.0 V                                    |           | 1.0 V            | (3)        | (-) 0.78 V                               | (4)      | 0.78 V          |             |  |  |  |  |
| 88. | A sc                                                                                                                                    | olution of nick                              | el chlori | ide was electro  | lysed us   | ing Platinum e                           | electrod | les. After elec | trolysis,   |  |  |  |  |
| 00. | (1)                                                                                                                                     | nickel will be                               | deposi    | ted on the anoc  | de (2)     | CL, gas will be liberated at the cathode |          |                 |             |  |  |  |  |
|     | (3)                                                                                                                                     | H, gas will be                               | e liberat | ted at the anode | (4)        | nickel will be                           | deposi   | ted on the ca   | thode       |  |  |  |  |
| 89. | 337b                                                                                                                                    | ich of the follo                             | wing m    | etals will under | rgo oxid   | ation fastest?                           |          |                 | (8)         |  |  |  |  |
| 09. |                                                                                                                                         | Cu                                           | (2)       | Li               | (3)        | Zinc                                     | (4)      | Iron            |             |  |  |  |  |
| 90. | Wh                                                                                                                                      | ich of the follo                             | wing ca   | nnot be used fo  | or the ste | rilization of d                          | rinking  | water?          |             |  |  |  |  |
| 90. | (1)                                                                                                                                     |                                              | min B on  |                  | (2)        | Calcium Oxy                              | chlorid  | e               |             |  |  |  |  |
|     | (3)                                                                                                                                     |                                              | hloride   | 343              | (4)        | Chlorine wat                             |          |                 |             |  |  |  |  |
| 91. |                                                                                                                                         | entes cample ch                              | owed it   | to contain 1.20  | mg/litr    | e of magnesiur                           | n sulph  | ate. Then, its  | hardness in |  |  |  |  |
| 91. | A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness in terms of calcium carbonate equivalent is |                                              |           |                  |            |                                          |          |                 |             |  |  |  |  |
|     |                                                                                                                                         | 1.0 ppm                                      | (2)       |                  | (3)        | 0.60 ppm                                 | (4)      | 2.40 ppm        |             |  |  |  |  |
| 92. | Sou                                                                                                                                     | da used in the I                             | -S proc   | ess for softeni  | ng of wa   | ter is, Chemic                           | ally.    |                 |             |  |  |  |  |
| 74. | (1)                                                                                                                                     | sodium bica                                  | rhonate   |                  | (2)        | sodium carb                              | onate de | ecahydrate      |             |  |  |  |  |
|     | (3)                                                                                                                                     | [[지원 [[] [[] [] [] [] [] [] [] [] [] [] [] [ |           |                  | (4)        |                                          | oxide (  | 40%)            |             |  |  |  |  |
| 93  | Th                                                                                                                                      | e process of ce                              | mentati   | on with zinc po  | wder is    | known as                                 |          |                 |             |  |  |  |  |
| 73  |                                                                                                                                         | sherardizing                                 |           | zincing          | (3)        | metal claddi                             | ng (4)   | electropla      | ting        |  |  |  |  |
|     |                                                                                                                                         |                                              |           |                  | 15.4       |                                          |          |                 |             |  |  |  |  |

| Set Code :     | <b>T2</b> |
|----------------|-----------|
| Booklet Code : | A         |

| 94.  | Car  | rosion of a metal is fa           | stest in            |        |                    |                |            |
|------|------|-----------------------------------|---------------------|--------|--------------------|----------------|------------|
|      | (1)  | rain-water (2)                    | acidulated water    | r(3)   | distilled water    | (4) de-ionise  | d water    |
| 95.  | Wh   | ich of the following is           | a thermoset poly    | mer?   |                    |                |            |
|      | (1)  | Polystyrene                       |                     | (2)    | PVC                |                |            |
| 9.   | (3)  | Polythene                         |                     | (4)    | Urea-formaldehy    | yde resin      |            |
| 96.  | Che  | mically, neoprene is              |                     |        |                    | 40             |            |
|      | (1)  | polyvinyl benzene                 |                     | (2)    | polyacetylene      |                |            |
|      | (3)  | polychloroprene                   |                     | (4)    | poly-1,3-butadie   | ne             |            |
| 97.  | Vul  | canization involves he            | ating of raw rubbe  | rwith  |                    |                |            |
|      | (1)  | selenium element                  |                     | (2)    | elemental sulphu   | r              |            |
|      | (3)  | a mixture of Se and o             | elemental sulphur   | (4)    | a mixture of seler | nium and sulph | ur dioxide |
|      |      |                                   |                     |        |                    |                |            |
| 98.  | Petr | ol largely contains               |                     |        |                    |                |            |
|      | (1)  | a mixture of unsatura             | ated hydrocarbons   | C,-    | C,                 | ŭ.             |            |
|      | (2)  | a mixture of benzene              | , toluene and xyle  | ne     |                    |                |            |
|      | (3)  |                                   |                     |        |                    |                |            |
|      | (4)  | a mixture of saturate             | d hydrocarbons C    | 6 - C8 |                    |                |            |
| 99.  | Whi  | ch of the following ga            | ses is largely resp | onsit  | ole for acid-rain? |                |            |
|      | (1)  | SO <sub>2</sub> & NO <sub>2</sub> |                     | (2)    | CO2 & water vapo   | our            |            |
|      | (3)  | CO2 & N2                          |                     | (4)    | N, & CO,           |                |            |
|      |      |                                   |                     |        | 32 4-1 377         |                |            |
| 100. | BOL  | stands for                        |                     |        |                    |                |            |
|      | (1)  | Biogenetic Oxygen D               | emand               | (2)    | Biometric Oxyger   | n Demand       |            |
|      | (3)  | Biological Oxygen D               | emand               | (4)    | Biospecific Oxyg   | en Demand      |            |
|      |      |                                   |                     |        |                    |                |            |
|      |      |                                   |                     |        |                    |                |            |

Set Code : T2

Booklet Code : A

## COMPUTER SCIENCE AND ENGINEERING

| 10   | i. W | nich of the foll   | lowing is  | the first inte | grated log  | gic family?             |            |               |           |  |
|------|------|--------------------|------------|----------------|-------------|-------------------------|------------|---------------|-----------|--|
|      |      | ECL                |            | TTL            | (3)         |                         | (4         | ) MOS         |           |  |
| 102  | 2. W | at is the appro    | ximate w   | orst-case no   | ise margir  | n in TTL logi           | c circuit? | 84 0          |           |  |
|      |      | 400 mV             |            | 1 V            | (3)         | AND THE PERSON          | (4         |               |           |  |
| 103  | . Wh | ich of the foll    | owing is   | the fastest in | tegrated l  | ogic family?            |            |               |           |  |
|      |      | ECL                |            | TTL            | (3)         |                         | (4)        | CMOS          |           |  |
| 104  | . Wh | en is that the N   | NAND lo    | gic gate can f | unction a   | s a NOT logi            | c gate?    | 7             |           |  |
|      | (1)  | One input is       |            |                | (2)         | One input is set to '1' |            |               |           |  |
|      | (3)  | Inputs are le      | ft open    |                | (4)         | Inputs are c            |            |               |           |  |
| 105  | . Wh | at logic function? | on is prod | uced when an   | inverter i  | s added to ea           | ch input a | nd the output | of an AND |  |
|      | (1)  | NAND               | (2)        | XOR            | (3)         | OR                      | (4)        | NOR           |           |  |
| 106  | . Wh | at is the simpli   | fied form  | of the giver   | Boolean     | expression:             | (X + Y +   | XY) (X + Z)?  | į.        |  |
| 100  |      | X+Y+Z              |            |                |             | X+YZ                    |            | XZ+Y          |           |  |
| 107  | Give | e the effective    | combina    | tion for a Ma  | ster slave  | flip-flop:              | *          |               |           |  |
|      | (1)  | An SR flip-f       | lop and a  | D flip-flop    | (2)         | An SR flip-             | flop and a | T flip-flop   |           |  |
|      | (3)  | A T flip-flop      | and a D    | flip-flop      |             | Two T flip-f            |            |               |           |  |
| 108. | How  | many flip-flo      | ps are re  | quired to divi | ide the ing | out frequency           | by 64?     |               |           |  |
|      | (1)  |                    | (2)        |                | (3)         |                         | (4)        | 7             |           |  |
| 109. | Whi  | ch is the first    | micropro   | cessor introd  | uced by t   | he Intel Corp           | oration?   |               |           |  |
|      |      | 2002               |            | 4004           |             | 8008                    | (4)        | 8080          |           |  |
| 110. | The  | 8086 micropro      | ocessor h  | as a           | bit         | data bus and            | a          | bit address   | bus.      |  |
|      | (1)  |                    |            | 8, 16          |             | 16, 16                  | (4)        | 16, 20        |           |  |
|      |      |                    |            |                | 17-A        |                         |            |               | (CSE)     |  |

|      |      |                  |            |                                                |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Booklet Code :    | A    |
|------|------|------------------|------------|------------------------------------------------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|
| 111  | . 80 | 86 has a         | t          | ytes queue.                                    |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                 |      |
|      |      | 4                |            | 6                                              | (3)       | 8              | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                |      |
| 112  | . Th | e registers wh   | ich are u  | ised for the ac                                | ddress ca | alculations in | based in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ndexed addressing | mode |
|      | (1)  | BP & SI          | (2)        | BP & DI                                        | (3)       | BX & SI        | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BX/BP & SI/DI     |      |
| 113. | Wh   | ich of the foll  | owing in   | struction is us                                | ed for ur | conditional in | ump?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |      |
|      |      | JMP              |            | JUMP                                           | (3)       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GO                |      |
| 114. | Ho   | w is the imple   | mentatio   | n of the contr                                 | ol sectio | n of Intel 808 | 6 micro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | processor done?   |      |
|      | (1)  | Using micro      | program    | ming                                           |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |      |
|      | (2)  | Using nanop      |            | 200 (20) (10) (10) (10) (10) (10) (10) (10) (1 |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |      |
|      | (3)  |                  |            | Microprogram                                   | mmine a   | nd Hard-wire   | d decion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |      |
|      | (4)  | Using hard-      | wired cor  | ntrol in a rando                               | om mann   | er .           | u ucsigii:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |      |
| 115. | Hov  | v many condit    | ional flas | rs are available                               | e in 8048 | 862            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |      |
|      | (1)  |                  | (2)        |                                                | (3)       |                | · (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                |      |
| 116. | Wha  | nt address instr | ructions a | are used by a S                                | tack?     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |      |
|      |      | Zero             |            | One                                            |           | Two            | . (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Three             |      |
| 17.  | Whi  | ch is the addre  | ssing mo   | de where the                                   | operand   | is specified w | vithin the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | instruction?      |      |
|      | (1)  |                  |            | Indirect                                       |           | Immediate      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Register          |      |
| 18.  | EDR  | AM indicates     | 6          | 727                                            |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |      |
|      | (1)  | Extended DR      |            |                                                | (2)       | Enhanced DR    | AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |      |
|      | (3)  | Electronic DI    |            |                                                | (4)       | Electrical DR  | TO THE PARTY OF TH |                   |      |
| 10   |      | 1 64 611         |            |                                                |           | Sil            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |      |
|      |      | h of the follow  |            | ches better wit                                | th DMA    | I/O?           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |      |
|      |      | High Speed R     | AM         |                                                | (2)       | Printer        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |      |
| (    | 3)   | ALU              |            |                                                | (4)       | Disk           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |      |
|      |      |                  |            |                                                |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |      |

Set Code : T2

(CSE)

|      |                                                                    |                    |          |                           |         |                 |            | Set Co         | ie: T2       |  |  |  |
|------|--------------------------------------------------------------------|--------------------|----------|---------------------------|---------|-----------------|------------|----------------|--------------|--|--|--|
|      |                                                                    |                    |          |                           |         |                 | 1          | Booklet Coo    | ie : A       |  |  |  |
| 120. | Whi                                                                | ch of the followi  | ing is   | not a form of me          | mory'   | ?               |            | 72             |              |  |  |  |
|      | (1)                                                                | Translation loo    |          |                           | (2)     | Instruction op  | code       |                |              |  |  |  |
|      |                                                                    | Instruction cac    |          |                           | (4)     | Instruction re  | gister     |                |              |  |  |  |
| 121. | Whi                                                                | ch of the followi  | ng is a  | n advantage of v          | irtual  | memory?         |            |                | 7.0          |  |  |  |
|      | (1)                                                                | Processes can l    | be give  | en priority               |         |                 |            |                |              |  |  |  |
|      | (2)                                                                | Programs large     | r than   | the physical mer          | mory:   | size can be run |            |                |              |  |  |  |
|      | (3)                                                                | Faster access to   | mem      | ory on an averag          | ge      |                 |            |                |              |  |  |  |
|      | (4)                                                                | Linker can assig   | n addr   | esses independent         | of wh   | ere the program | will be lo | aded in physic | al memory.   |  |  |  |
| 122. | Whi                                                                | ch of the followi  | ing is a | in advantage of n         | nemo    | ry interlacing? |            | ×.             |              |  |  |  |
|      | (1)                                                                | A large memor      | y is ob  | stainted                  |         |                 |            |                |              |  |  |  |
|      |                                                                    | A non-volalite     |          |                           |         |                 |            |                |              |  |  |  |
|      |                                                                    | The cost of the    |          |                           |         |                 |            |                |              |  |  |  |
|      | (4)                                                                | Effective speed    | d of th  | e memory is inc           | reased  | i               |            |                |              |  |  |  |
| 123. | Whi                                                                | ch of the follow   | ing de   | vices should be g         | iven l  | higher priority | in assig   | ning interrup  | ts?          |  |  |  |
|      | (1)                                                                | Printer            | (2)      | Floppy disk               | (3)     | Keyboard        | (4)        | Hard disk      | 12           |  |  |  |
| 124. | addressing mode permits relocation without any change to the code. |                    |          |                           |         |                 |            |                |              |  |  |  |
|      | (1)                                                                | Base register      | 3.5      |                           | (2)     |                 |            |                |              |  |  |  |
|      | (3)                                                                | Relative           |          |                           | (4)     | Indirect        |            |                |              |  |  |  |
| 125. | Bety                                                               | ween what comp     | onents   | of a Computer d           | oes ar  | I/O processor   | control    | the flow of in | formation?   |  |  |  |
|      | (1)                                                                | I/O devices and    |          |                           | (2)     | I/O devices a   | nd Mair    | memory         |              |  |  |  |
|      | (3)                                                                | Two I/O device     | es       | hannaut restriction       | (4)     | Main memor      | y and C    | ache memory    | 100          |  |  |  |
| 126. | Wh                                                                 | at 'C' command     | which    | is used to free th        | ne allo | cated memory    | ?          |                |              |  |  |  |
|      |                                                                    | Dispose            |          | Free                      | (3)     | Deallocate      | . (4)      | Refresh        |              |  |  |  |
| 127. | . In o                                                             | rder to realize dy | namic    | memory allocate included? | ion by  | using function  | s like m   | alloc, calloc  | and realloc, |  |  |  |
|      |                                                                    | string.h           |          | stdiomemory.h             | (3)     | stdio.h         | (4)        | stdlib.h       |              |  |  |  |
|      |                                                                    |                    |          |                           | 19-A    |                 |            |                | (CSE)        |  |  |  |
|      |                                                                    |                    |          |                           |         |                 |            |                |              |  |  |  |

| 12   | 8. W   | hat does 'stderr'                 | in C la | anguage stands f   | or?      |                |         |                   |          |
|------|--------|-----------------------------------|---------|--------------------|----------|----------------|---------|-------------------|----------|
|      | (1)    |                                   |         |                    | (2)      | Standard erro  | r type: | s                 |          |
|      | (3)    | Standard erro                     | r defi  | nitions            | (4)      |                |         | 15.06             |          |
| 129  | 9. WI  | nat is the output                 | of the  | following 'C' co   | ode?     |                |         | 120               |          |
|      | ma     | in()                              |         |                    |          |                |         |                   |          |
|      |        | {                                 |         |                    |          |                |         |                   |          |
|      |        | static char                       | a[]='   | "ECET12";          |          |                |         |                   | 1000     |
|      |        | char * b = *                      | ECE     | Γ12";              |          |                |         |                   |          |
|      |        | printf("\n%                       | d %d    | ", sizeof(a), size | of(b));  |                |         |                   |          |
|      |        | }                                 |         |                    | (5)(53)  |                |         |                   |          |
|      | (1)    | a = 7, b = 2                      | (2)     | a = 2, b = 7       | (3)      | a = 7, b = 6   | (4)     | a = 7, b = 8      |          |
| 120  | 117    |                                   |         |                    | 250      |                |         | •                 |          |
| 130  |        | at is the purpose                 |         |                    |          |                |         |                   | 4        |
|      | (1)    |                                   |         | ons to the startin |          | ne file        |         |                   |          |
|      | (2)    |                                   |         | ons to the end of  |          |                |         |                   |          |
|      | (3)    |                                   |         | ons to the startin |          |                |         |                   |          |
|      | (4)    | file pointer rep                  | ositio  | ons starting of th | e word   | 1              |         |                   |          |
| 131. | The    | total number of                   | nodes   | in a binary tree   | with '   | n' leaves is   |         |                   |          |
|      | (1)    |                                   |         | 2n                 |          | 2n-1           | (4)     | 2n-2              |          |
| 132. | A to   | ee is special case                | e of a  | graph which cor    | nsists o | of nu          | mber    | of cycles.        |          |
|      | (1)    |                                   | (2)     |                    | (3)      | 100-100        | (4)     |                   |          |
| 133. | A he   | ap allows a very                  | effic   | ient implementa    | tion of  | îa .           |         |                   |          |
|      | (1)    |                                   |         | Queue              |          | Priority queue | (4)     | Tree              |          |
| 134. | If the | postorder trave<br>d return what? | ersing  | of a tree results  | in C F   | EDBJIHG        | A; the  | n the preorder to | raversal |
|      | (1)    | ABDCEFGHIJ                        | (2)     | ABCDEFGHIJ         | (3)      | ABCDEFHGIJ     | (4)     | ABCDFEGHIJ        |          |
|      |        |                                   |         | 20                 | 20-A     |                |         |                   | (CCE)    |
|      |        |                                   |         |                    |          | *)             |         |                   | (CSE)    |

| Set Code :     | T2 |
|----------------|----|
| Booklet Code : | A  |

| 135. | Whi   | ch data structure                                                                 | allow   | s deletion at bot   | h end     | s of the list but in  | sertio  | n at only one er   | nd?         |  |  |  |  |
|------|-------|-----------------------------------------------------------------------------------|---------|---------------------|-----------|-----------------------|---------|--------------------|-------------|--|--|--|--|
|      | (1)   | Input-restricted                                                                  | dequ    | c                   | (2)       | Output-restricte      | ed deq  | ue                 |             |  |  |  |  |
|      |       | Priority queue                                                                    | 2.7     |                     | (4)       | Circular queue        |         |                    |             |  |  |  |  |
| 136. |       | , lower is                                                                        | not n   | resent in the TC    | P/IP r    | eference model.       |         |                    |             |  |  |  |  |
| 130. | -     | 1100                                                                              |         | Session             | (3)       | Internet              | (4)     | Application        |             |  |  |  |  |
|      |       | Transport                                                                         |         |                     | 11/2/2000 |                       |         |                    |             |  |  |  |  |
| 137. |       | is the I                                                                          | rotoc   | ol Data Unit (PD    | U) us     | ed at the network     | laye    | r of the OSI mo    | del.        |  |  |  |  |
| -    |       | Segment                                                                           |         | Frame               | (3)       | Packet                | (4)     | Bits               |             |  |  |  |  |
| 138. | Whi   | ch layer in the (                                                                 | SI ref  | ference model ta    | kes th    | e responsibility of   | of flow | v control?         |             |  |  |  |  |
| 55.7 |       | Application la                                                                    |         |                     | (2)       | Transport layer       |         |                    |             |  |  |  |  |
|      |       | Network layer                                                                     |         |                     | (4)       | Session layer         |         |                    |             |  |  |  |  |
| 139  | Ø     | are the devices that operate at the network layer of the OSI model for forwarding |         |                     |           |                       |         |                    |             |  |  |  |  |
|      | the   | packets over WA                                                                   |         | 50.5                |           |                       |         |                    |             |  |  |  |  |
|      | (1)   | Hubs                                                                              | (2)     | Bridges             | (3)       | Switches              | (4)     | Routers            |             |  |  |  |  |
| 140  | . Wh  | at does SMTP st                                                                   | and fo  | r?                  |           |                       |         |                    | T.          |  |  |  |  |
|      | (1)   |                                                                                   |         | ansfer protocol     | (2)       |                       |         |                    |             |  |  |  |  |
|      | 9.00  | Simple mail to                                                                    |         |                     | (4)       | Simple messag         | ge trar | sfer protocol      |             |  |  |  |  |
| 141  | . Ide | ntity the class of                                                                | the IP  | address given in    | the b     | inary representat     | ion be  | elow:              |             |  |  |  |  |
|      |       | Α                                                                                 |         | В                   |           | C                     | (4)     | D                  |             |  |  |  |  |
| 142  | Wh    | ich of the folloy                                                                 | ving st | atement is typica   | ılly FA   | LSE about Ether       | mets?   |                    |             |  |  |  |  |
|      | (1)   | Ethernets use                                                                     | circui  | t switching to se   | nd me     | ssages                |         |                    |             |  |  |  |  |
|      | 0.00  | Ethernets are                                                                     | uced in | providing phys      | ical ac   | idress                |         |                    |             |  |  |  |  |
|      | (2)   | Ethernet austor                                                                   | ale neo | a collision-detecti | on met    | thod to ensure that r | nessag  | ges are transmitte | d properly. |  |  |  |  |
|      | (3)   | National                                                                          | manta   | d by Ethernete or   | e limi    | ted in length to a    | few h   | undred meters.     |             |  |  |  |  |
|      | (4)   | Networks cor                                                                      | mecte   | a by Edicines a     |           |                       |         |                    |             |  |  |  |  |
|      |       |                                                                                   |         |                     |           |                       |         |                    | (CSE)       |  |  |  |  |

|       |     |                 |            |                 |            |                                |         | Booklet Co    | ode: A       |
|-------|-----|-----------------|------------|-----------------|------------|--------------------------------|---------|---------------|--------------|
| 143   |     | acts as         | security l | ouffer between  | n a compa  | any's private net              | work a  | nd all extern | al networks. |
|       | (1) | Firewall        |            |                 | (2)        | Password                       |         |               |              |
|       | (3) | Disaster rec    | covery pla | an              | (4)        | Virus checker                  |         |               | 4            |
| 144.  | Hov | v many bytes    | are used   | by the Class *1 | B' IP add  | resses to represe              | ent the | Host and No   | twork IDs?   |
|       |     | 1,3             |            | 2,3             |            | 2,2                            |         | 3,1           | thork ibs.   |
|       | (., | 1,5             | (2)        | -10             | (3)        | 2,2                            | (4)     | 3,1           |              |
| 145.  | _   | pr              | otocol is  | used for remo   | ote login  | purpose.                       |         |               |              |
|       | (1) | Telnet          | (2)        | HTTP            | (3)        | FTP                            | (4)     | SMTP          |              |
| 146.  | Wha | at is meant by  | a Proces   | s?              |            |                                | . 1     |               |              |
| 10000 | (1) |                 |            |                 | guage an   | d stored on the                | lisk    |               |              |
|       | (2) | (1)T#)          |            | _               | Pare Pera  | a stored on the c              | 11314   |               |              |
|       | (3) |                 |            | condary mem     | iory       |                                |         |               |              |
|       | (4) | 2.5             |            | main memory     |            |                                |         |               |              |
|       | 190 |                 |            |                 |            | Support Control Vision (Little |         |               |              |
| 147.  |     |                 | m cannot   | boot if the _   | 1009000    | _ is not available             | on it.  |               |              |
|       | (1) | Loader          |            |                 | (2)        | Linker                         |         |               |              |
|       | (3) | Interpreter     |            |                 | . (4)      | Operating Syst                 | em      |               |              |
| 148.  | Wha | t is the use of | Job Con    | trol Language   | (JCL) st   | atements?                      |         |               |              |
|       | (1) | Allocate the    | CPU to     | a job           |            |                                |         |               |              |
|       | (2) | Read the inp    | out from o | ne device to a  | another d  | evice                          |         |               |              |
|       | (3) | Inform the C    | S, the sta | art and end of  | a job in a | batch                          |         |               |              |
|       | (4) | For managin     | ng the men | mory            |            |                                |         |               |              |
| 149.  | Whi | ch strategy al  | lows the   | processes that  | are logic  | cally runnable to              | be ter  | nporarily su  | spended?     |
|       | (1) | Shortest Job    | First      |                 | (2)        | First come Firs                | t serve | ed            |              |

Set Code : T2

(CSE)

22-A

(4) Round Robin

(3) Non-preemptive scheduling

| Set Code :     | T2 |
|----------------|----|
| Booklet Code : | A  |

| 150.    |      | algorith            | nm ex    | ecutes the sho   | rtest job | first that has ent                 | ered t  | he queue of job | s.   |
|---------|------|---------------------|----------|------------------|-----------|------------------------------------|---------|-----------------|------|
|         |      | FIFO                |          | SJF              | (3)       | Round Robin                        |         | (4) LIFO        |      |
|         | -    |                     |          |                  |           | eily avoided by                    |         |                 |      |
| 151.    | 6000 |                     | e file s | system can be    |           | rily avoided by _<br>CPU schedulin |         |                 |      |
|         | 1000 | Thrashing           |          |                  | 0.550.00  | L/O devices sch                    |         | a :             |      |
|         | (3)  | Compaction          |          |                  | (4)       | LO devices sen                     | cuum    | 8               |      |
| 152.    |      | at is a page fault? |          |                  |           |                                    |         |                 |      |
|         | (1)  | An error that o     | ccurs    | while a progra   | m acces   | ses a page in the                  | memo    | ry              |      |
|         | (2)  | An access to a      | page t   | hat is currently | y not ava | ilable in the men                  | nory    |                 |      |
|         | (3)  | A reference to      | a pag    | e of another pr  | rogram    |                                    |         |                 |      |
|         | (4)  | An error which      | is pa    | ge specific      |           |                                    | 38      |                 |      |
| 153.    | Bela | dy's Anomaly is     | a beh    | aviour of        | pa        | ge replacement                     | algorit | hm.             |      |
| 9,5,510 |      | Optimal             |          | LRU              | (3)       | Circular FIFO                      | (4)     | FIFO            | 177  |
| 154     | Wh   | at is the special s | oftwa    | re used to crea  | te a job  | queue?                             |         |                 |      |
|         |      | Device driver       |          |                  |           | Linker                             | (4)     | Loader          |      |
| 155     | WK   | ich of the follow   | ina de   | vices has the h  | niohest a | ccess time?                        |         |                 |      |
|         |      | Floppy Disk         | D oc     |                  | (2)       |                                    | 00      |                 |      |
|         |      | Associative Me      | emory    |                  |           | Main memory                        |         |                 |      |
|         | 1-1  |                     | 2010010# |                  | 100       | - Parameter and the second         |         |                 |      |
| 156.    | Rela | ational database    | is a gr  | roup of          |           |                                    |         |                 |      |
|         | (1)  | Fields              | (2)      | Records          | (3)       | Tables                             | (4)     | Packages        |      |
| 157.    | The  | best way to clas    | sify th  | ne data models   | is by th  | e degree of                        |         |                 |      |
| 200     |      | difficulty          |          | abstraction      |           |                                    | (4)     | unification     |      |
|         |      |                     |          |                  |           | 4 (E)                              |         |                 |      |
| 158.    | Hie  | rarchical databas   | se is n  | ot efficient wh  |           |                                    | 61.     |                 |      |
|         | (1)  | security            |          |                  | 00000000  | large amounts                      |         | V               |      |
|         | (3)  | large number o      | of tran  | sactions         | (4)       | 1:M relationsh                     | ips     |                 | 6111 |
|         |      |                     |          |                  |           |                                    |         |                 | (CEE |

| Set Code :     | T2 |
|----------------|----|
| Booklet Code : | A  |
| Booklet Code : | A  |

| 159  | . Wh  | ich of the folle | owing i             | s a Date functi | on in SQ  | L?            |             |                  |           |
|------|-------|------------------|---------------------|-----------------|-----------|---------------|-------------|------------------|-----------|
|      | (1)   | SYSDATE          |                     |                 | (2)       | SYS DAT       | Œ           |                  |           |
|      | (3)   | SYSTEM_D         | ATE                 |                 | (4)       | CURREN        | T_DATE      |                  |           |
| 160  | . Wh  | at needs to be   | created<br>are work | if Kishan is wo | orking w  | ith an emplo  | yee table a | and wants to fir | d out how |
|      | (1)   | Create a nev     | v table             |                 | (2)       | Create a n    | ew query    |                  |           |
|      | (3)   | Create a nev     | v form              |                 | (4)       | Utilize the   | database    | wizard           |           |
| 161  | . А п | ormal form v     | vhich is            | sufficient for  | r the co  | nsideration   | of a relati | onal database    | design is |
|      | (1)   | BCNF             | (2)                 | 5 NF            | (3)       | 4 NF          | (4)         | 3 NF             |           |
| 162  | Wh    | ich of the follo | wing ty             | pe of JOIN is   | not used  | in SQL?       |             |                  |           |
|      | (1)   | Inner join       | (2)                 | Outer join      | (3)       | Equi-join     | (4)         | Non Equi-jo      | in        |
| 163. | Abb   | reviate SQL;     |                     |                 |           |               |             |                  |           |
|      | (1)   | Systematic Q     | uery La             | inguage         | (2)       | Structured    | Query Lar   | nguage           |           |
|      | (3)   | Structural Qu    | iery Lar            | iguage          | (4)       | Simple Qu     | 500         |                  |           |
| 164. | Wha   | at is the comma  | and use             | d in SQL to rer | nove rov  | v(s) from a g | iven table  | ?                |           |
|      |       | DELETE           |                     | DROP            | (3)       |               | (4)         | REMOVE           |           |
| 165. | Whe   | re is the 'HAV   | ING'cl              | ause of SQL u   | sed for q | uerying?      |             |                  |           |
|      |       |                  |                     | than columns    |           |               |             |                  |           |
|      | (2)   | Used for colu    | imns rat            | ther than rows  |           |               |             |                  |           |
|      | (3)   | Used for grou    | ips rath            | er than rows    |           |               |             |                  |           |
|      | (4)   | Used for row     | s rather            | than groups     |           |               |             |                  |           |
| 166. | If du | plicate rows an  | e to be a           | voided in the q | ueried ou | itput using a | SELECTS     | tatement, what   | qualifier |
|      | (1)   | DEFINITE         | (2)                 | DISTINCT        | (3)       | DISJOINT      | (4)         | UNIQUE           |           |
|      |       |                  |                     | 873             | 24-A      | 1017          |             |                  | (CSE)     |

|     |      |                     |        |                                  |         |                    |      | Transcription of the Control | 7834 |
|-----|------|---------------------|--------|----------------------------------|---------|--------------------|------|------------------------------|------|
|     |      |                     |        |                                  |         |                    |      | Set Code :                   |      |
|     |      |                     |        | *                                |         |                    |      | Booklet Code :               | A    |
| 67. | Sele | ct one equivalent   | SQL    | statement for the                | e give  | n query:           |      |                              |      |
|     | SEL  | ECT EMP_NAM         | EFR    | OM EMPLOYER                      | EWH     | ERE PLACE = 'F     | IYD' | ;                            |      |
|     |      | SELECT EMP_         |        |                                  |         |                    |      |                              |      |
|     | (2)  | SELECT EMP_         | NAM    | E IN EMPLOYE                     | E WI    | HERE PLACE IN      | ('HY | 'D');                        |      |
|     | (3)  | SELECT EMP_         |        |                                  |         |                    |      |                              |      |
|     | (4)  | SELECT EMP_         | NAM    | E IN EMPLOYE                     | E WI    | HERE PLACE = '     | HYD  | )');                         |      |
| 68. | In S | QL what comma       | nd is  | used to get sorted               | outp    | ut of a given quer | y    |                              |      |
|     | (1)  | GROUPBY             | (2)    | ORDER BY                         | (3)     | SORTBY             | (4)  | ARRANGEBY                    |      |
| 69. | Mul  | ti-valued depende   | encie  | s should                         | ь       | e eliminated.      |      |                              |      |
|     |      | Never               | 7      |                                  |         |                    | (4)  | Frequency                    |      |
| 70  | DR   | OP statement in S   | OI.h   | elones to which o                | catego  | ory statement      |      |                              |      |
| 70. |      | DML statement       |        |                                  |         |                    | (4)  | TCL statement                | 60   |
| 71. |      | storage c           | lass i | s not supported b                | ov C+   | + compiler.        |      |                              |      |
|     | (1)  |                     |        | Register                         |         |                    | (4)  | Mutable                      |      |
| 72. |      | feature is          | not a  | at all supported b               | y the   | C++ compiler.      |      |                              |      |
|     | CONC | Operate overloa     |        | ALCOHOLOGICA CARROLINA - DE VENE |         | Exception hand     | ling |                              |      |
|     |      | Reflection          |        |                                  | (4)     | Namespaces         |      |                              |      |
| 73. |      | keyword             | supp   | orts dynamic met                 | thod r  | resolution in C++  |      |                              |      |
|     | (1)  | Abstract            | - PF   |                                  | (2)     | Virtual            |      |                              |      |
|     | (3)  | Dynamic             |        |                                  | (4)     | Typeid             |      |                              |      |
|     |      |                     |        |                                  |         |                    |      |                              |      |
| 74. |      | ch of the following | ng sh  | ould be used to a                |         |                    | in C | ++1                          |      |
|     |      | Dot operator        |        |                                  | 2110211 | Member name        |      |                              |      |
|     | (3)  | An index number     | r      | 40                               | (4)     | Function name      |      |                              |      |
|     |      |                     |        | ,                                | S.A     | **                 |      |                              | (CSI |

|      |      |                                   |         |                |             |                 |         | Booklet Coo | de : A |
|------|------|-----------------------------------|---------|----------------|-------------|-----------------|---------|-------------|--------|
| 175  | . WI | hat is meant by o                 | perato  | r overloadin   | g in C++?   |                 |         |             |        |
|      | (1)  | It is creating                    | new op  | erations       |             |                 |         |             |        |
|      | (2)  | It is creating a                  | new fu  | nctions        |             |                 |         |             |        |
|      | (3)  | It is giving ne                   | w mea   | nings to exis  | sting C++   | operators       |         |             |        |
|      | (4)  | It is loading n                   | ultipl  | e operators i  | nto a give  | n function      |         |             |        |
| 176  | . w  | hat is meant by C                 | :++ pu  | re virtual fur | nction?     |                 |         |             |        |
|      | (1)  | A function wh                     | ich ha  | s no body      |             |                 |         |             |        |
|      | (2)  | A function wh                     | ich ret | urns no valu   | e           |                 |         |             |        |
|      | (3)  | A function wh                     | ich is  | never used is  | n a base cl | ass             |         |             |        |
|      | (4)  | A function wh                     | ich is  | difficult to e | xplain      |                 | 12      |             |        |
| 177. | In C | C++ what does re                  | edirect | tion perform   |             |                 |         |             |        |
|      | (1)  | It redirects a f                  | ile fro | m a device to  | o a stream  | 1               |         |             |        |
|      | (2)  | It redirects a s                  | tream   | from a file t  | o a conso   | le              |         | •           |        |
|      | (3)  | It redirects a d                  | levice  | from the scr   | een to a fi | ile             |         |             |        |
|      | (4)  | It redirects the                  | scree   | n from a dev   | ice to a st | tream           | •       |             |        |
| 178. | Tov  | which class of st                 | ream o  | loes 'cout' o  | bject in C  | ++ belong to?   |         |             |        |
|      | (1)  | stringstream                      | (2)     | istream        | (3)         | ostream         | (4)     | ifstream    |        |
| 179. | Wh   | ich of the follow                 | ing is  | used by an o   | object to n | efer to itself? |         |             |        |
|      | (1)  | this                              | (2)     | itself         | (3)         | self            | (4)     | own         |        |
| 80.  | In C | ++ when no account inheritance to | cess sp | ecifier is ex  | plicitly m  | entioned for th | ne base | class,      | is the |
|      |      | Public                            | (2)     | Private .      | (3)         | Internal        | (4)     | Protected   |        |
| 81.  | In C | ++, name mang                     | ling is | used to supp   | oort the fe | ature called    |         |             |        |
|      | (1)  | Overloading                       | (2)     | Overriding     | (3)         | Data Hiding     | (4)     | Abstraction |        |

Set Code : T2

(CSE)

26-A

|        |            |                                                                                                                 |                              |                           |          |                  |            | Set           | Code: T2        |  |  |  |
|--------|------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------|----------|------------------|------------|---------------|-----------------|--|--|--|
|        |            |                                                                                                                 |                              |                           |          |                  |            | Booklet (     | Code : A        |  |  |  |
| 82.    | Whi        | ich of the following                                                                                            | operat                       | ors in C++                | cannot   | be overloaded?   | 507<br>507 |               |                 |  |  |  |
|        | (1)        | Assignment                                                                                                      | *                            | =                         | (2)      | Equality -       | *          | **            |                 |  |  |  |
|        | (3)        | Scope resolution                                                                                                | *                            | . ::                      | (4)      | Arrow            | *          | ->            |                 |  |  |  |
| 83.    |            | cannot be                                                                                                       | decla                        | red as a ten              | nplate i | n C++            |            |               |                 |  |  |  |
|        | (1)        | Classes                                                                                                         |                              |                           | (2)      | Member func      | tions      |               |                 |  |  |  |
|        | (3)        | Global functions                                                                                                |                              |                           | (4)      | Macros           |            |               |                 |  |  |  |
| 84.    | Whi        | ich of the following                                                                                            | Inherit                      | ance mech                 | anisms   | is not supported | in Jav     | /a .          |                 |  |  |  |
| 575.00 | (1)        | Single level                                                                                                    |                              |                           | (2)      | Multiple level   |            |               |                 |  |  |  |
|        | (3)        | Multi level ·                                                                                                   |                              |                           | (4)      | All the above    |            |               |                 |  |  |  |
| 185.   | (1)<br>(2) | ass X is friend of cla<br>Class X is friend o<br>Class Z is friend o<br>Class X and Class<br>Class Y is a mutua | f Class<br>f Class<br>Z do n | s Z<br>s X<br>ot have any | friend   | relationships    | nich of    | the following | ing is correct? |  |  |  |
| 86.    | Wha        | at is the output of the                                                                                         | follov                       | wing given                | Java co  | de:              |            |               |                 |  |  |  |
|        |            | public class Ecet {                                                                                             |                              |                           |          |                  |            |               |                 |  |  |  |
|        |            | public static void r                                                                                            |                              |                           | ) {      |                  |            |               |                 |  |  |  |
|        |            | new Ecet().go("hel                                                                                              | 1000                         |                           |          |                  |            |               |                 |  |  |  |
|        |            | new Ecet().go("hel                                                                                              | lo", "w                      | ord", 2);                 |          |                  |            |               |                 |  |  |  |
|        |            | }                                                                                                               |                              |                           |          |                  |            |               |                 |  |  |  |
|        |            | <pre>public void go (string y, int x) { System.out.print(y[y.length - 1] + " ");</pre>                          |                              |                           |          |                  |            |               |                 |  |  |  |
|        |            | System.out.print(y                                                                                              | [y.leng                      | th - 1 J + ""             | );       |                  |            |               |                 |  |  |  |
|        |            | ,                                                                                                               |                              |                           |          |                  |            |               |                 |  |  |  |
|        | (1)        | hhe (2                                                                                                          | ) he                         | llo world                 | (3)      | world world      | (4)        | compilat      | ion fails       |  |  |  |
|        | (1)        | ii iie (2                                                                                                       | , 110                        | no world                  | (3)      | morra morra      | ,          | Jumphin       |                 |  |  |  |
|        |            |                                                                                                                 |                              |                           |          |                  |            |               |                 |  |  |  |

27-A

| Set Code :     | T2 |
|----------------|----|
| Booklet Code : | A  |

- 187. Which one of the following statements is TRUE?
  - (1) At once, more than two threads may possibly end up in deadlock.
  - (2) The JVM implementation guarantees that multiple threads cannot enter into a deadlocked state.
  - (3) Deadlocked threads release once their sleep() method's sleep duration has expired.
  - (4) Deadlocking can occur only when the wait(), notify(), and notifyAll() methods are used incorrectly.
- 188. Fill up the blank with one of the following statements for the given Java code which allows Ecet class to compile: class Navigation{ public enum Direction {North, South, East, West}

) public class Ecet{

}

- (1) Direction d = North;
- (2) Navigation.Direction d = Navigation.Direction.North;
- (3) Direction d = Direction. North;
- (4) Navigation.Direction d = North;
- 189. What is the output of the given Java code below? interface TestA { String to String();}

public class Test {
public static void main (String[] args) {
System.out.println(new TestA() {
public String to String() { return "test";}}

}); }

- (1) test
- (2) null
- (3) An exception is thrown at runtime
- (4) Compilation fails because of an error in line 1

(CSE)

Set Code : T2
Booklet Code : A

|      |                                | 0.00                                                   |           |              |                                                 |            |        |         |      |     | P 41  |
|------|--------------------------------|--------------------------------------------------------|-----------|--------------|-------------------------------------------------|------------|--------|---------|------|-----|-------|
| 190. | Given the following Java code, |                                                        |           | car          | can directly access and change the value of the |            |        |         |      |     |       |
|      | varia                          | ble name?                                              |           |              |                                                 |            |        |         | 36   |     |       |
|      |                                | package exam                                           | G.        |              |                                                 |            |        |         |      |     |       |
|      |                                | class Ecet {                                           |           |              |                                                 |            |        |         |      |     |       |
|      |                                | public String                                          | name = '  | 'hello";     |                                                 |            |        |         |      |     |       |
|      |                                | }                                                      |           |              |                                                 |            | 12035  |         |      |     |       |
|      | (1)                            | any class                                              |           |              | (2)                                             | only th    |        |         | 2000 |     |       |
|      | (3)                            | any class in th                                        | (4)       | any cla      | ss that                                         | extends    | Ecet   |         |      |     |       |
| 191. | Wha                            | t is the output                                        | of the fo | llowing Jav  | va code?                                        |            |        |         |      |     |       |
|      |                                | public class E                                         | cetStrir  | ng1 {        |                                                 |            |        |         |      |     |       |
|      |                                | public static v                                        |           |              | rgs) {                                          |            |        |         |      |     |       |
|      |                                | String str = "4                                        | 20":      |              |                                                 |            |        |         |      |     |       |
|      |                                | str+=42:                                               |           | 35           |                                                 |            |        |         |      |     |       |
|      |                                | System.out.p                                           | rint(str) |              |                                                 |            |        |         |      |     |       |
|      |                                | }                                                      |           |              |                                                 |            |        |         |      |     |       |
|      |                                | }                                                      |           |              | 10000                                           |            |        |         |      |     |       |
|      | (1)                            | 42                                                     | (2)       | 420          | (3)                                             | 42042      |        | (4)     | 462  |     |       |
| 192  | Giv                            | en the followin                                        | g Java c  | ode below,   | what is the                                     | output?    |        |         |      |     |       |
|      |                                | int $a = 0$ ;                                          |           |              |                                                 |            |        |         |      |     |       |
|      | 4                              | int $b = 10$ ;                                         |           |              |                                                 |            |        |         |      |     |       |
|      |                                | do {                                                   |           |              |                                                 |            |        |         |      |     |       |
|      |                                | b;                                                     |           |              |                                                 |            |        |         |      |     |       |
|      |                                | ++a;                                                   |           |              |                                                 |            |        |         |      |     |       |
|      |                                | } while (a<5                                           | );        |              |                                                 |            |        |         |      |     |       |
|      |                                | symtem.out.j                                           |           | ","+b);      |                                                 | H          |        |         |      |     |       |
|      | (1)                            | 5,6                                                    | (2)       | 5,5          | (3)                                             | 6,5        |        | (4)     | 6,6  |     |       |
| 193  | Wh                             | at is a Web Bro                                        | wser?     |              |                                                 |            |        |         |      |     |       |
|      | (1)                            | A compiler which compiles high level language programs |           |              |                                                 |            |        |         |      |     |       |
|      | (2)                            | A compiler which compiles low level language programs  |           |              |                                                 |            |        |         |      |     |       |
|      | (3)                            | An interprete                                          | er which  | helps to vie | w and nav                                       | igate thre | ough w | eb page | S    |     |       |
|      | (4)                            | A loader pro                                           | gram w    | hich connec  | ets to the op                                   | erating    | system |         |      |     |       |
|      | (.)                            | P.V.                                                   |           |              | 29-A                                            |            |        |         |      | 240 | (CSE) |
|      |                                |                                                        |           |              |                                                 |            |        |         |      |     |       |

| Set Code :     | <b>T2</b> |  |
|----------------|-----------|--|
| Booklet Code : | A         |  |

| 194  | Wh  | ich of the follo                 | wing is   | not a Web Brov    | wer?     |                   |          |                  |            |
|------|-----|----------------------------------|-----------|-------------------|----------|-------------------|----------|------------------|------------|
|      | (1) | Mozilla Fire                     | ox        | i i               | (2)      | Apple Safari      |          | 19               |            |
|      | (3) | Google Chro                      | me        |                   | (4)      | You Tube          |          |                  |            |
| 195. | Whi | ich protocol is                  | used to   | connect to Inte   | met?     | 1.                |          |                  |            |
|      | (1) |                                  |           | FTP               | (3)      | ICMP              | (4)      | IP               |            |
| 196. | Whi | ich HTML tag                     | is used t | for indicating lo | ng quot  | tations?          |          |                  |            |
|      | (1) | CACA!                            |           | blockquote        |          | label             | (4)      | style            |            |
|      |     |                                  |           |                   |          |                   | - 32     |                  |            |
| 197. | Whi | ich of the follo                 | wing sta  | atements is com   | rect abo | ut VBScript?      |          |                  |            |
|      | (1) | It is an applic                  | ation-s   | ecific program    | ming la  | nguage like LIS   | P        |                  |            |
|      | (2) | It is client-sic                 | le scrip  | ing language      |          |                   |          |                  |            |
|      | (3) | It is not a Wel                  | Brow      | ser firendly lang | guage    |                   |          |                  |            |
| 0.5  | (4) | It is not an ac                  | tive scri | pting language    |          |                   |          |                  |            |
|      |     |                                  |           |                   |          |                   |          |                  |            |
| 198. |     | ch VBscript bu<br>the end of the |           |                   | positio  | n of the occurrer | ice of c | one string withi | n another, |
|      | (1) | InStr                            | (2)       | String            | (3)      | InStrRev          | (4)      | StrComp          |            |
| 199  | Whi | ch of the follow                 | vino is   | an ASP object?    |          |                   |          |                  |            |
|      |     | AdRotator                        | (2)       | Server            | (3)      | BrowserCap        | (4)      | Content Link     | ino        |
|      | (1) | Aukotatoi                        | (2)       | Berver            | (3)      | Diowsercup        | (+)      | Coment Emin      | 6          |
| 200. | Whi | ch of the follow                 | ving is   | an ASP compor     | nent?    |                   |          |                  |            |
|      | (1) | Response                         | (2)       | Request           | (3)      | Application       | (4)      | Content Rota     | ator       |
|      |     |                                  |           |                   |          |                   |          | 85               |            |

D-A (CSE