(EEE)

ELECTRICAL AND ELECTRONICS ENGINEERING

INSTRUCTIONS TO CANDIDATES

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on
 the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING,
 THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE
 HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE
 SHEET, DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- Immediately on opening this Question Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- 3. Use of Calculators, Mathematical Tables and Log books is not permitted.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- 7. One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate:
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leafter attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leafter attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

I-B

Set Code :	T2
Booklet Code :	В

Note: (1) Answer all questions.

(1) 4 cosA sinB cosC

(3) 4 cosA cosB cosC

x = nπ, n∈Z
 x=(2n+1) π/2, n∈Z

(2) Each question carries I mark. There are no negative marks.

If $A+B+C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$

The principal solution of Tanx = 0 is

The value of Tan-1 (2) + Tan-1 (3) is

- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.

(2) 4 sinA cosB sinC

(4) 4 sinA sinB sinC

MATHEMATICS

	(1)	$\frac{\pi}{4}$	(2)	$\frac{\pi}{2}$	(3)	3	(4) $\frac{3\pi}{4}$
4.	If th	e sides of a rig	ht angle	e triangle are	in A.P., th	en the ratio	of its sides is
	(1)	1:2:3	(2)	2:3:4	(3)	3:4:5	(4) 4:5:6
5.	The	value of r.r, r	,r, is				
	(1)			Δ-2	(3)	Δ-3	(4) Δ ⁴
6.	$\frac{1}{r!}$ +	$\frac{1}{r^2} + \frac{1}{r^3} = .$					8 4
		1	(8)	1	(2)	1	(4) 1

Set Code :	T2
Booklet Code :	В

7.	If $a=6$, $b=5$, $c=9$, then the value of angle A	ie
	if a = 0, b = 3, c = 9, then the value of angle A	113

- (2) cos-1 (2/5)
- (3) cos-1 (7/9) (4) cos-1 (1/3)

- (1) $\sqrt{2}e^{-ix/4}$ (2) $\sqrt{2}e^{ix/4}$

9. If
$$1, \omega, \omega^2$$
 be the cube roots of unity, then the value of $2^{\omega^3}.2^{\omega^5}.2^{\omega}$ is

- (1) w
- (2) w2
- (3) 1

10. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2-c}$

- (2) $\sqrt{f^2-c}$ (3) $2\sqrt{g^2-c}$ (4) $2\sqrt{f^2-c}$

- (1) (3, 1)
- (2) (1,3)
- (3) (-3, -1) (4) (-1, -3)

12. The radius of the circle
$$\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$$
 is

- (1) 2c

- (4) c

13. The parametric equations of the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 are

- (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta$, $y = a \cos\theta$
- (3) $x = a \cos\theta, y = b \sin\theta$
- (4) $x = a \csc\theta$, $y = b \cot\theta$

14. The equation of the directrix of the parabola
$$2x^2 = -7y$$
 is

- (2) 8y-7=0
- (3) 7y+8=0

15. The condition for a straight line
$$y = mx + c$$
 to be a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

- (1) c = a/m
- (2) $c^2 = a^2m^2 b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

16.
$$Lt_{x\to 1} \frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$$
 is

- (1) 3
- (2) 2

17.
$$\log i =$$

- (1) π/2

18.
$$\frac{d}{dx}[\log_7 X] =$$

- (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_7^7$ (4) $\frac{1}{x} \log_7^e$

19.
$$\frac{d}{dx}[2\cosh x] =$$

(1)
$$\frac{e^x + e^{-x}}{2}$$
 (2) $\frac{e^x - e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x - e^{-x}$

$$(2) \quad \frac{e^x - e^{-x}}{2}$$

(3)
$$e^x + e^x$$

$$20. \quad \frac{d}{dx} \left[\cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right] =$$

(1)
$$\frac{1}{1+x^2}$$

(1)
$$\frac{1}{1+x^2}$$
 (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$

(3)
$$\frac{2}{1+x^2}$$

(4)
$$\frac{-2}{1+x^2}$$

21. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$

- (1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$ (4) $\sqrt{\frac{x}{y}}$

22. The derivative of
$$e^x$$
 with respect to \sqrt{x} is

- (1) $\frac{2\sqrt{x}}{e^x}$ (2) $2\sqrt{x}e^x$ (3) $\frac{e^x}{2\sqrt{x}}$ (4) $\sqrt{x}e^x$

- 23. The equation of the normal to the curve $y = 5x^4$ at the point (1, 5) is

 - (1) x + 20y = 99 (2) x + 20y = 101 (3) x 20y = 99
- (4) x 20y = 101
- 24. The angle between the curves $y^2 = 4x$ and $x^2 + y^2 = 5$ is
- (2) tan-1(2) (3) tan-1(3) (4) tan-1(4)

- 25. If $u = x^3 y^3$ then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$
 - (1) $6(x^3+y^3)$ (2) $6x^3y^3$
- (3) 6x³

- 26. $\left| \operatorname{cosec} x \, dx \right| =$
 - (1) log (cosec x + cot x) + C (3) log (tan x/2) + C
- (2) $\log(\cot x/2) + C$
- (3) $\log (\tan x/2) + C$

(4) $-\csc x \cdot \cot x + C$

- 27. $\int_{0}^{\frac{\pi}{2}} \cos^{11} x \, dx =$

 - (1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$ (4) $\frac{128}{693}$

- 28. $[f'(x)[f(x)]^n dx =$
 - (1) $\frac{[f(x)]^{n-1}}{n-1} + C$ (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$

- $29. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$

 - (1) $Tan^{-1}(\sqrt{x+6})+C$ (2) $2Tan^{-1}(\sqrt{x+6})+C$
 - (3) $Tan^{-1}(x+7)+C$
- (4) $2Tan^{-1}(x+7)+C$

Set Code:

Booklet Code :

30. $\int \tan^{-1} x \, dx =$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$
 (2) $\frac{1}{1+x^2} + C$

(2)
$$\frac{1}{1+x^2} + C$$

(3)
$$x^2.Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1+x^2} + C$$

31. $\int \frac{dx}{1+e^{-x}} =$

(1)
$$\log(1+e^{-x}) + C$$

(2)
$$\log(1+e^x) + C$$

32. $\int_{-\pi}^{\frac{\pi}{2}} \sin|x| \, dx =$

- (2) 1
- (3) 2

33. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is

- (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units

34. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} - 3y = x$ is

- (1) 1
- (3) 3

35. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{3}{2}} = a \frac{d^2 y}{dx^2}$ is

- (1) 4
- (3) 1

36. The family of straight lines passing through the origin is represented by the differential equation

(1)
$$ydx + xdy = 0$$

$$(2) \quad xdy - ydx = 0$$

(1)
$$ydx + xdy = 0$$
 (2) $xdy - ydx = 0$ (3) $xdx + ydy = 0$ (4) $xdx - ydy = 0$

$$(4) \quad xdx - ydy = 0$$

www.manaresults.co.in

- 37. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + by + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- 38. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $ye^{-x^2} = x + c$ (2) $ye^x = x + c$ (3) $ye^{x^2} = x + c$ (4) y = x + c

- 39. The complementary function of $(D^3+D^2+D+1)y = 10$ is
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$
- (2) $C_1 \cos x + C_2 \sin x + C_3 e^x$ (4) $(C_1 + C_2 x + C_3 x^2) e^x$
 - (3) $C_1 + C_2 \cos x + C_3 \sin x$

- 40. Particular Integral of $(D-1)^4y = e^x$ is

 - (1) $x^4 e^x$ (2) $\frac{x^4}{24} e^{-x}$ (3) $\frac{x^4}{12} e^x$ (4) $\frac{x^4}{24} e^x$

- 41. If $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, then $A^4 =$
 - (1) 3I
- (2) 91
- (3) 271
- 42. If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x is

 - (1) 1 (2) 2
- (3) 3
- What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3
 - (1) 64
- (2) 268
- (3) 512 (4) 256

44. If
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then $|A| =$

- (1) 1 .
- (2) 2
- (3) 3

45. The solution of a system of linear equations 2x-y+3z=9, x+y+z=6, x-y+z=2 is

- (1) x = -1, y = -2, z = -3

(3) x = 2, y = 1, z = 3

46. If $\frac{1}{r^2 + a^2} = \frac{A}{r + ai} + \frac{B}{r - ai}$ then A = ______, B = _____

- (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

47. If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then $\sum_{i=1}^3 A_i$ is equal to

- (2) 2A, (3) 4A,

48. The period of the function $f(x) = |\sin x|$ is

- (1) n
- (2) 2π

49. If A+B=45°, then (1-cotA). (1-cotB) is

- (1) 1
- (3) 2

50. The value of sin 78° + cos 132° is

- (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$

Set Code : T2 **Booklet Code:**

PHYSICS

51.	The linear momentum of a particle varies with time t as $p = a + bt + ct^2$ which of the following	is is
	porrect?	

(1) Force varies with time in a quadratic manner.

Force is time-dependent.

(3) The velocity of the particle is proportional to time.

(4) The displacement of the particle is proportional to t.

52. A shell of mass m moving with a velocity v suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is

(1) v

(2) 2v

53. The velocity of a freely falling body after 2s is

(1) 9.8 ms⁻¹

(2) 10.2 ms⁻¹

(3) 18.6 ms⁻¹

(4) 19.6 ms-1*

54. A large number of bullets are fired in all directions with the same speed u. The maximum area on the ground on which these bullets will spread is

(2) $\frac{m u^4}{g^2}$ (3) $\frac{m u^2}{g^4}$ (4) $\frac{m u}{g^4}$

The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is µ, will be

(2) $\frac{v^2}{\mu g}$ (3) $\frac{v^2}{4\mu g}$ (4) $\frac{v}{2\mu g}$

56. When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts

(1) In the backward direction on the front wheel and in the forward direction on the rear wheel

(2) In the forward direction on the front wheel and in the backward direction on the rear wheel

(3) In the backward direction on both the front and the rear wheels

(4) In the forward direction on both the front and the rear wheels

Set Code :	T2
Booklet Code :	В

									Doomer C	oue . B
57.	In a	perfectly inel	astic col	lision, the tw	o bodies					
	(1)	strike and ex	plode		(2)	expl	ode with	out strik	cing	
	(3)	implode and	explode		(4)	com	bine and	l move to	ogether	
58.		ler the action over is	of a cons	tant force, a	particle is	exper	iencing	a consta	nt accelerat	tion, then the
	(1)	zero			(2)	posit	tive			
	(3)	negative			(4)	incre	easing u	niformly	with time	
59.	Con	sider the follo	wing tw	o statements:						\$
	A:	Linear mom	entum o	f a system of	particles	is zero	o.			
+5	B:	Kinetic ener	gy of a	system of par	ticles is z	ero.				
	Ther	1								
	(1)	A implies B	& B imp	lies A						
	(2)	A does not in	nply B &	B does not	imply A					
	(3)	A implies B	but B do	es not imply	Α .					
	(4)	A does not in	nply B b	ut B implies	Α					
60.		engine develo ht of 40 m? (C			low mucl	h time	will it t	ake to li	ft a mass of	f 200 kg to a
	(1)	4s	(2)	5s	(3)	8s		(4)	10s	
61.	Ifas	spring has tim	e period	T, and is cut	into n equ	al par	ts, then t	the time	period will	be
	(1)	$T\sqrt{n}$	(2)	$\frac{\mathrm{T}}{\sqrt{n}}$. (3)	nΤ		(4)	т .	
62.	Whe	n temperature	increas	es, the freque	ency of a t	uning	fork			

- - (2) decreases
 - (3) remains same
 - (4) increases or decreases depending on the materials

								Bookle	t Code	: B
63.	lfa	simple harmon	ic mot	ion is repre	sented by	$\frac{d^2x}{dy^2} + \alpha x = 0, \text{ its}$	s time p	eriod is		
	(1)	$2\pi\sqrt{\alpha}$	(2)	2πα	(3)	$\frac{2\pi}{\sqrt{\alpha}}$	(4)	$\frac{2\pi}{\alpha}$		
64.	A ci	inema hall has v	olume	of 7500 m	. It is requi	ired to have rev	erberat	ion time	of 1.5 s	econds.
	(1)	850 w-m ²	2		(2)	82.50 w-m ²				
	(3)	8.250 w-m ²		4.0	(4)	0.825 w-m ²				
65.	Toa	bsorb the sound	f in a ha	all which of	the follow	ing are used				
		Glasses, store			(2)	120	ins			
	(3)	Polished surfa	ices			Platforms				
56.	IfN	represents avag	adro's	number the	en the numb	per of molecule	s in 6 o	m of hyd	rogen at	NTPie
100	(1)		(2)		(3)			N/6	rogen a	IVII IS
57.	The	mean translatio	nal kin	etic energy	of a perfec	t gas molecule	at the t	emperati	ire T K	is
		$\frac{1}{2}kT$					(4)			
8.	The	amount of heat	given t	o a body wł	nich raises i	its temperature	by 1°C			28
		water equivaler			(2)					
	15009 A.	specific heat	200			temperature g				
9.	Duri:	ng an adiabatic lute temperatur	proces	s, the press ratio Cp/Cv	ure of a gas	s is found to be	propor	tional to	the cub	e of its
	(1)	3 2	(2)	$\frac{4}{3}$.	(3)	2	(4)	5 3		1.4
		100		***						
					12-B					

Set Code:	T2
Booklet Code :	В

- 70. Cladding in the optical fiber is mainly used to
 - (1) to protect the fiber from mechanical stresses
 - (2) to protect the fiber from corrosion
 - (3) to protect the fiber from mechanical strength
 - (4) to protect the fiber from electromagnetic guidance
- Two quantities A and B are related by the relation A/B = m where m is linear mass density and A is force. The dimensions of B will be
 - (1) same as that of latent heat
 - (2) same as that of pressure
 - (3) same as that of work
 - (4) same as that of momentum
- 72. The dimensional formula of capacitance in terms of M, L, T and I is
 - (1) [ML2T2F]
- (2) [ML-2T4]
- (3) [M'L'T']]
- 73. If I, m and n are the direction cosines of a vector, then

 - (1) l+m+n=1 (2) $l^2+m^2+n^2=1$ (3) $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}=1$

- The angle between i+j and j+k is
 - (1) 0°
- (2) 90°

- 75. A particle is moving eastwards with a velocity of 5 ms-1. In 10 seconds the velocity changes to 5 ms-1 northwards. The average acceleration in this time is
 - (1) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-west
- (3) $\frac{1}{2}$ ms⁻² towards north
- (4) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-east

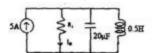
Set Code:	T2
Booklet Code:	В

CHEMISTRY

76.	Pota	ssium metal an	d potas	sium ions						
	(1)	(1) both react with water				have the same	have the same number of protons			
	(3)	both react with	h chlor	ine gas	(4)	have the same	e electro	onic configuration	i.	
77.	stan	dard flask. 10 m er into 100 ml o	l of this f solution	solution were pip on. The concentra	etted ation	out into another of the sodium c	r flask ar hloride		nl in a stilled	
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M		
78.	Con	centration of a	1.0 M	solution of phosp	horic	acid in water i	s	(a)	*	
		0.33 N		1.0 N		2.0 N	(4)	3.0 N		
79.	Whi	ich of the follow	ving is:	a Lewis acid?			9	1.5		
12.	(1)	Ammonia			(2)	Berylium chl	oride			
	(3)	Boron trifluor	ride		(4)	Magnesium o				
						250000000000000000000000000000000000000				
80.	Whi			nstitutes the con			solution	1?		
	(1)	Potassium chl	oride a	nd potassium hy	droxic	ie				
	(2)	Sodium acetal	te and a	cetic acid						
	(3)	Magnesium su	lphate	and sulphuric ac	id	9 7 2				
	(4)	Calcium chlor	ride and	d calcium acetate						
81.	Whi	ich of the follov	ving is	an electrolyte?		100				
		Acetic acid		Glucose	(3)	Urea	(4)	Pyridine		
82.		culate the Stand		of the cell, Co	l/Cd*2	//Cu*2/Cu give	n that E	C° Cd/Cd ⁺² = 0.44	V and	
		(-) 1.0 V		1.0 V	(3)	(-) 0.78 V	(4)	0.78 V		
83.	Asc	olution of nicke	chlori	ide was electroly	sed u	sing Platinum	electrod	es. After electroly	sis,	
	(1)			ted on the anode				ted at the cathode		
		시 중에 있는데 하는데 있는데 없는데 없는데 없는데 없다.			20,000			ted on the cathode		
	(3)	n, gas will be	nocial	ed at the anode		meker will be	deposi	tea on the camous		
					14-B			56.00		

Set Code :	T2
Booklet Code :	В

84.	Whi	ich of the follov	ving m	etals will unde	rgo oxid	lation fastest?		
	(1)	Cu	(2)	Li	(3)	Zinc	(4)	Iron
85.	Whi	ich of the follow	ving ca	nnot be used f	or the st	erilization of dr	inking	water?
	(1)	Ozone	1150		(2)	Calcium Oxy	chlorid	e
	(3)	Potassium Ch	loride		(4)	Chlorine water	er	
86.	Aw	ater sample sho	wed it	to contain 1.20	mg/litr	e of magnesium	sulpha	ate. Then, its hardness in
	term	ns of calcium ca	arbonat	e equivalent is				
	(1)	1.0 ppm	(2)	1.20 ppm	(3)	0.60 ppm	(4)	2.40 ppm
87.	Sod	a used in the L-	S proce	ess for softeni	ng of wa	ter is, Chemica	lly.	
	(1)	sodium bicart	onate		(2)	sodium carbo	nate de	cahydrate
	(3)	sodium carbo	nate		(4)	sodium hydro	xide (4	0%)
88.	The	process of cem	entatio	n with zinc po	wder is l	cnown as		
	(1)	sherardizing	(2)	zincing	(3)	metal claddin	g (4)	electroplating
89.	Carr	rosion of a meta	al is fas	stest in				
	(1)	rain-water	(2)	acidulated w	ater (3)	distilled water	r (4)	de-ionised water
90.	Whi	ch of the follow	ving is	a thermoset pe	olymer?			
	(1)	Polystyrene	- 5	70		PVC		
	(3)	Polythene			(4)	Urea-formald	lehyde	resin
91.	Che	mically, neopre	ne is					
25	(1)	polyvinyl ben			(2)	polyacetylene		
	(3)	polychloropre			(4)	poly-1,3-buta		7
92.	Vale	canization invol	uae ham	ting of my mi	shor with			-
74.	(1)	selenium elen		unig or raw ruc		elemental sul	ohur	
	7.7			lamantal culpl	0.5			n and sulphur dioxide
	(3)	a mixture of S	e and e	iementai suipi	m (4)	a mixture of s	cientun	ii and surption dioxide


Set Code:	
Booklet Code:	В

93.	Petr	ol largely conta	ins					112	
		a mixture of ur		ited hydrocarbo	ns C,-	C,			
	(2)			, toluene and xy					
	(3)			d hydrocarbons		14.			
	(4)			d hydrocarbons					
94.	Whi	ich of the follow	ing ga	ses is largely re		ble for acid-rain			
	(1)	SO2 & NO2				CO2 & water va	apour		
	(3)	CO2 & N2		9 8	(4)	N ₂ &CO ₂			
95.	BOI	D stands for						8 17	
	(1)	Biogenetic Ox	ygen [Demand	(2)	Biometric Oxy	7		
	(3)	Biological Oxy	ygen D	emand	(4)	Biospecific Ox	ygen	Demand	
									3
96.	The	valency electro	nic cor	nfiguration of P	hospho	orous atom (At.N	No. 15)) is	
		3s2 3p3		3s1 3p3 3d1	(3)	$3s^2 3p^2 3d^1$.	(4)	3s1 3p2 3d2	
07	A	alament 'A' of A	No 1	combines with	an ele	ment 'B' of At.N	0.17.7	The compound f	ormed is
91.		covalent AB				covalent AB,			
	(1)	covaicites	(-)	ionie i io	1-7			79387835-933	
98.	The	number of neut	rons p	resent in the ato	m of se	Ba ¹³⁷ is			
		56	(2)	137		193	(4)	81	
						No for			
99.	130	lrogen bonding		1.			deare	of ionization	
	(1)			7.50	(2)	decrease in its			100
	(3)	increase in its	DOLLIN	g point	(4)	decrease in its	COIIII	6 Ponn	
100	Inth	ne HCl molecule	, the b	onding between	hydro	gen and chlorine	is	54, ,	72
	(1)	F 200 - 100			(3)	polar covalent	(4)	complex coor	dinate
						**			

ELECTRICAL AND ELECTRONICS ENGINEERING

900	(3)	120		200		320	53 (7)	
101.	Ina	given	below	circuit.	at resonance	L	is equal	to

- (1) 0A
- (2) 10A
- (3) 5A
- (4) 0.5 A

102. An alternating current has a peak value of 2A. If its Peak Factor is
$$\sqrt{2}$$
 and its form factor is $\frac{\pi}{2\sqrt{2}}$, then its average value is

$$(1) \quad \frac{8}{\pi}A$$

(1)
$$\frac{8}{\pi}A$$
 (2) $\frac{4}{\pi}A$ (3) $\frac{\pi}{2}A$ (4) $\frac{\pi}{4}A$

(3)
$$\frac{\pi}{2}A$$

(4)
$$\frac{\pi}{4}$$
A

- (1) 0.8 lagging
- (2) 0.8 leading
- (3) unity

$$(1) \quad \frac{R}{\sqrt{R^2 + X^2}}$$

(1)
$$\frac{R}{\sqrt{R^2 + X^2}}$$
 (2) $\frac{X}{\sqrt{R^2 + X^2}}$ (3) $\frac{R}{R^2 + X^2}$ (4) $\frac{X}{R^2 + X^2}$

$$(3) \quad \frac{R}{R^2 + X^2}$$

$$(4) \quad \frac{X}{R^2 + X^2}$$

(1) Electromagnetism

(2) Conduction

(3) Energy transfer

Mutual induction

106. The equivalent resistance of a transformer having transformation ratio (K) = 5 and RI = 0.1
$$\Omega$$
 when referred to secondary is

- 150 Ω
- (2) 0.02 Ω
- (3) 0.004Ω
- (4) 2.5 Ω

- (1) 100 kVA
- (2) 70.7 kVA
- (3) 50.5 kVA (4) 25.2 kVA

17-B

								Set Cod	e: T2
								Booklet Cod	e: B
108.	In hi	igh frequency tra	nsfor	mers, the ma	iterial used	d for core is	7		
	(1)	Ferrite	(2)	Iron	(3)	Cast iron	. (4)	Silica	
109.	Buc	hholz relay is use	d to						
	(1)	identify faults							
	(2)	rectify the fault	8						
	(3)	trip-off connect	tions	when fault e	xists				
	(4)	clears the fault							
110.	relat	ribution transfor	ant be	ecause					
	(1)	The primary of s throughout the d	uch tr lay wh	ansformers a tile copper lo	re energize ss occur or	ed for all the 24 h aly when the seco	ours in ondary	a day and core is supplying th	loss occu e load
	(2)	To ensure maxi	mum.	All-day effic	iency				
	(3)	Greater core lo	sses n	ny destroy ir	n insulatio	n			
	(4)	Greater core los	sses v	vill heat up t	he oil of t	ne transformer i	apidly	*	
111.		ch one of the fol		ng methods	gives more	e accurate resul	t for d	etermination (of voltage
	(1)	MMF method			(2)	Synchronous i	mpeda	nce method	
	(3)	Potier triangle	metho	od	(4)	ASA method			
112.	Hvd	rogen is used in l	arge	alternators n	nainly to				
		reduce distortio			(2)	cool the mach	ine		
		strengthen the r			(4)	reduce eddy c	urrent	losses	
113.	The	frequency of em	f gene	erated in an 8	3-pole alte	rnator running a	at 900	rpm is	
		50 Hz	(2)	120 Hz		90 Hz		60 Hz	
114.	The	angle between sy		onously rota	ting stator	flux and rotor p	oles of	f a synchronou	s motor i
	(1)	Synchronizing	(2)	Slip	(3)	Power factor	(4)	Torque	

Set Code :	
Booklet Code :	В

115.						nical angle and ving relation is t		he number	of poles of	
	(1)	$\theta_e = P \times \theta_m$			(2)	$\theta_e = (P/2) \times \theta_m$				
		$\theta_e = \theta_m/P$				$\theta_e = P/\theta_m$				
116.		essential condi	tion for	parallel operati	on of t	wo single phase t	ransfo	rmers is th	at they shoul	
	(1)	Polarity	(2)	KVA rating	(3)	Voltage ratio	(4)	Percenta	ge impedanc	
117.	The	V-curve of a sy	ynchron	ous motor is a	plot of					
	(1)	State current	versus s	stator power fac	ctor					
	(2)	Stator curren	t versus	rotor current a	t all los	ıds				
	(3)	Stator curren	t versus	rotor currents v	when p	ower delivered i	s cons	tant		
	(0)000E			power delivere					191	
118.	roto	r resistance is 0	.25 ohn		n exter	of 0.03 when do nal resistance 0. torque?	C. C. C. C. C.			
	(1)	0.03	(2)	0.06	(3)	0.09	(4)	0.1		
119.	The	torque develop	ed in a	three phase ind	uction	motor depends o	n			
	(1)	Stator flux an	d rotor	current	(2)	stator flux and stator current				
	(3)	stator current	and rot	or flux	(4)	rotor current a	nd rot	or flux		
120.	A si	ngle phase ac i	nductio	n motor is not s	elf star	ting because it h	as			
	(1)	No slip			(2)	rotor is short of	ircuit	ed		
	(3)	high intertia			(4)	absence of rota	ating n	nagnetic fi	eld	
121.	Asi	ngle phase win	ding in	single phase n	notor pr	roduces		0.		
	14-15	an alternating				a stationary ma	gnetic	field		
	(3)	a rotating mag	gnetic fi	eld	(4)	a steady magne	etic fie	ld		
					19.R				Œ	

Set Code : T2

Booklet Code : B

122.	Und	ter no-load cond	litions	, power factor of	an in	duction motor is	about		
	(1)	0.2 lag	(2)	0.9 lag	(3)	Unity	(4)	0.5 lead	
123.	Ofa	all the plants, mir	imun	quantity of fuel	used i	is required in	. plan	ıt.	
	(1)	Diesel power	(2)	Steam	(3)	Hydro-electric	(4)	Nuclear	
124.	The	overall efficience	cy (η)	of a Thermal Po	wer S	tation is			
	(1)	η_{boler}	(2)	$\eta_{\text{boiler}} \times \eta_{\text{generator}}$	(3)	$\eta_{\text{generator}}\times\eta_{\text{turbine}}$	(4)	$\eta_{\text{turbine}} \times \eta_{\text{boiler}}$	
125.	The	effect of water h	ammo	er can be minimiz	zed by	using			
	(1)	Spill way	(2)	Anvil	(3)	Surge Tank	(4)	Draft tube	
126.	lna	diesel power pla	int sus	pended impuritie	es in th	ne fuel are remove	ed by		
	(1)	Cyclone separa	ators		(2)	Electrostatic se	parat	ors	
	(3)	Fabric filters			(4)	Strainer*			
127.	The	rupturing capac	ity of a	a circuit breaker	is mea	sured in			
	(1)	Ampere	(2)	Volt-Ampere	(3)	Watt	(4)	Volt	
128.	A ci	rcuit breaker is o	essenti	ially					
		An arc extingui							
	(2)	A current intern	rupting	g device					
	(3)	A power factor	corre	cting device					
	(4)	A device for no	eutrali	zing the effect of	trans	ients			
129.	Mho	relay normally	is use	d for protection	of				
	(1)	Long transmiss	sion li	nes					
	(2)	Medium Transi	missio	on lines				- 63	
	(3)	Short transmis	sion li	nes					
	(4)	No length crite	rion						
					00.R				ŒEE

Set Code :	T2
Booklet Code :	В

130	0. Th	e scheme ado	opted for	bus-bar pr	otectio	n is					
	(1)	spilt-phase	e protecti	on	*	(2)	differentia	l protect	ion		
	(3)	over curre	nt protec	tion		(4)	reverse po	wer prot	ection		
13	l. Du	e to the ferra	ri effect	on long ov	erhead	lines					
	(1)	receiving o	end volta	ge is less th	nan sen	ding v	oltage				
	(2)	receiving e	end volta	ge is more	than se	nding	voltage				
	(3)	receiving o	end voltag	ge is equal	to send	ling v	oltage	24			
1	(4)	receiving o	end volta	ge is not ef	fected						
132	. Cor	rona occurs b	etween to	wo transmi	ission	lines v	when they are				
	(1)	closely spa	iced			(2)	widely space	ced			
	(3)	having high	h potentia	l differenc	e	(4)	carrying D	C power			
133	. Sur	ge impedenc	e of a trar	smission	line is	given	by				
	(1)	$\sqrt{(L/C)}$	(2)	$\sqrt{(C/L)}$)	(3)	\sqrt{LC}	(4)	$1\sqrt{LC}$	9	9
134	. The	general dista	ance for	hort trans	missio	n line	is			2	
		less than 80				(2)	80 km-250	km			
	(3)	more than 2	250 km			(4)	150 km-30	0 km			
135	The	resistance of	the line								
	(1)	increases w	ith increa	se in frequ	uency	(2)	decreases w	vith incre	ase in free	nuency	277
	(3)	is independ	ent of fre	quency	000000	(4)					
136.	InH	VDC Transm	nission Sy	stem AC is	s conv	erted t	o DC using				
		Rectifier	(2)	Inverter			Chopper	(4)	Cycloco	nverter	
137.	Susp	ension type i	nsulators	are used f	or volt	ages h	evond				
		220 V		400 V		(3)	11 KV	(4)	33 KV		
		6.53(\$6.0)	(-)			1-B		(-)	22.16.1		
						1-65					(EEE

Set Code:	T2
Booklet Code :	В

138	Pou	er Factor of	Industrial	loads is genera	ally				
150.		Unity		Leading		Lagging	(4)	Zero	
		5.23560026							
139.	Pole	mounted tra	insformer	stations are m	eant for	•			
	(1)	Primary tra	nsmissio	1	(2)	Primary dist			
	(3)	Secondary	transmiss	ion	(4)	Secondary d	istributio	on .	
140.	Tran	nsmission lin	es are trai	isposed to					
	(1)	Reduce cop	per loss						
	(2)	Reduce ski	n effect						
	(3)	Prevent inte	erference	with communi	cation l	ines	-		
	(4)	Present sho	rt circuit	between condu	uctors				
141.	The	units for spe	cific ener	rgy consumptio	on relate	ed to traction i	s		
	(1)	Watt - Hou Tonne - kn	(2)	Watt - Hour km	(3)	Joules/Sec	(4)	Watt	
142.	In K	ando system	of track	electrification		is conver	ted into		
	(1)	single phase	e, dc		(2)	dc, single ph	ase		
	(3)	single phase	e, three pl	nase	(4)	three phase,	single pl	hase	
143.				ed of 60 kmph duration of stop			ich are 6	km apart. T	he actual run
	(1)	60 sec	(2)	360 sec	(3)	240 sec	(4)	300 sec	
144.	Ave	rage speed of	a train is	dependent on					
	(1)	Distance be	tween two	stops & run tin	ne				
	(2)	Run time &							
	(3)	Stop time &							
	(4)	Acceleration							
	.,				22-B				ŒEE

Set Code :	T2
Booklet Code :	В

pgradiant is
pgradiant is
pgradiant is
pgradiant is
pgradiant is
V
e acceleration
e velocity
al area of wire
is same
ses
riring
led wiring
exceed the limit of
(4) 5 ohms
(EEE)

(2) High starting torque

145. The electric motor used for traction work should have

(1) Low starting torque

Set Code :	T2
Booklet Code :	В

52.	In e	lectrical installa	tions t	he fuse is alwa	ays conn	ected in		wire.	
		earth		neutral		phase	(4)	ground	
53.	The	transistor used	in amp	lifier circuits	operates	in			
	(1)	Active region			(2)	Saturation reg	gion		
	(3)	Cut off region	6		(4)	Reverse region	on		
54.	The	gain of an ampl	ifier is	given by the fo	ollowing	formula			
	(1)	G(dB) = 10 lo	g (p _{in} /p	o _{ost})	(2)	G(dB) = 10 lo	g (pour)		
	(3)	G(dB) = 10 lo	g (p _{out} /	p _{in})	(4)	G(dB) = 10 lo	og (p _{in})		
55.	The	number of diod	es that	are used in ha	lf wave i	rectifier and ful	I wave l	bridge rectifi	er are
	(1)	1,2	(2)	1,4	(3)	2,4	(4).	2,1	
56.	The 50H	average voltage z is	of a ful	l wave rectifier	fed fron	n an ac source o	fpeak vo	oltage, V _m and	frequency
	(1)	V_m/π	(2)	$2V_m/\pi$	(3)	$V_m/\sqrt{2}$	(4)	V_/2	
57.	Ina	transistor which	n of the	following lay	er is ligh	ntly doped			
	(1)	Emitter	(2)	Collector	(3)	Drain	(4)	Base	
58.	Zen	er diode regulat	es						
	(1)	Voltage	(2)	Current	(3)	Resistance	(4)	Power	
59.	The	frequency of os	scillatio	on of wein brid	lge oscil	llator in Hz is			
	(1)	$1/2 \pi RC$	(2)	2πRC	(3)	1/RC	(4)	R/C	
60.	XY	$Z + (\overline{X} + \overline{YZ})X'$	YZ+X	Ϋ́Z					
		21	(2)		(3)	Z	(4)	0	
					1200				aren.

Set Code :	
Booklet Code :	В

161	The	2's complemen	nt of th	e number 1001	1100 i	s		
	(1)	0110 0011	(2)	0110 0100	(3)	1001 1100	(4)	1001 1101
162.	The	bolean express	ion for	NOR gate with	inputs	A and B is		¥2
	(1)	A+B	(2)	AB	(3)	A+B	(4)	A+B
163.	AD	AC with 8 input	t bits h	asre	soluti	on compared with	DA	C with 4 input bits.
	(1)	High	(2)	Same	(3)	Low	(4)	Infinite
164.	The	power electron	ic devi	ce, Silicon Cont	3			
	(1)	Two junctions	and th	ree layers	(2)	Three junctions	and	three layers
	(3)	Three junction	ns and	four layers	(4)	Two junctions a	nd tw	o layers
165.	Whi	ich one of the fo	llowin	g is a bidirection	nal Co	ntrolled switch		
	(1)	Thyristor	(2)	Triac	(3)	GTO	(4)	Diac
166.	Ifth	e gate current of	fan SC	R is increased, i	its for	ward break over v	oltag	e V ₈₀ will
	(1)	Increase	(2)	Decrease	(3)	Not be affected	(4)	Be infinity
167.	În ar	n UJT triggering	circui	t for SCR, pulse	s are	generated at		of UJT.
	(1)	Emitter (E)	(2)	Base 1 (B1)	(3)	Base 2(B2)	(4)	B1-B2
168.	In a	half wave contr	olled r	ectifier feeding	R-L lo	ad, the range of f	iring	angle of thyristor is
	(1)	$0 \le \alpha \le 180^{\circ}$	(2)	90 ≤ α ≤ 180°	(3)	$0 \le \alpha \le 90^{\circ}$	(4)	$0 \le \alpha \le 360^{\circ}$
169.		DC output volta	ige, V	of a basic chopp	er cir	cuit with input vo	ltage.	, V_{in} and duty cycle, δ is
			(2)	$V_{_{0}} = V_{_{in}}/\delta$	(3)	$V_e = V_{in}/(1-\delta)$	(4)	V _e =V _{in}

								Set (Code :	T2
								Booklet (Code :[В
170	. An	AC regulato	r provides							
	(1)	Variable fi	requency, f	ixed mag	gnitudeAC					
	(2)	Fixed freq	uency, var	iable ma	gnitude AC					
	(3)	Fixed freq	uency, fixe	d magni	itude AC					
	(4)	Variable fr	requency, v	ariable r	magnitude AC					
171	. The	output volta	age of a sir	gle phas	se bridge inve	rter is				
	(1)				(2)		lal wave			
	(3)					Triangul				
							18			
172	Two	quadrant o	peration o	dc mot	or can be obta	ined if it is	fed from a			
	(1)	Uncontrol	led conver	tor	(2)	Half con	trolled conv	rertor		
	(3)	Half wave	convertor		(4)	Fully co	ntrolled con	vertor		
173.	For	controlling	the speed o	of a 3 ph	ase induction	motor V/f	ratio is mai	tained con	stant fo	or.
		Constant a					t reactance			
	(3)	Varying the	e air gap fl	ux	(4)	Variable	resistance			
174	805	I microcont	roller has		data lines ar	vd.	address	lines		
		16, 8		8. 8		8, 16	(4)			
	7.7	10,0	(2)	0, 0	(5)	0, 10	(4)	10, 20		
175.	Whi	ch of the fol	lowing ins	truction	is not a data	transfer ins	struction?			
	(1)	XCH	(2)	PUSH	(3)	ADD	(4)	MOV		
76.	Inter	mal memory	v of 8051	nicro co	ontroller cons	ists of				
		128 bytes o								
	12.12	4 K bytes o								
	17.77	2 K bytes o					×			
	(4)	128 bytes o		100 Jan 1909						

6-B (EEE)

Set Code :	T2
Booklet Code :	В

1.7.7.	Line	ingliest priority	much	uptis							
	(1)	TFI	(2)	IE1		(3)	TF0	(4)	IE0		
178.	Pero	centage Voltage	regula	ation of a	transm	nission	line is given b	v			
		(E,-E,)/E,*10					(E,-E,)/E,*10	-			
		(E,-E,)/E,*10					(E,-E,)/E,*16				
179.	In a	main line servi	ce of e	electric tı	raction	systen	ĭ	. 16			
	(1)	Distance betw	een tw	vo stops i	s very s	mall		50			
	(2)	Acceleration a	ind ret	ardation	periods	are sn	nall				
	(3)	Free running a	nd coa	asting per	riods ar	e short	ı				
	(4)	Acceleration a	nd ret	ardation	periods	are lo	ng			0.8	
180.	For	SCR, dv/dt prot	ection	is achiev	ed by	connec	ting				
	(1)	L in series with	SCR			(2)	RL in series v	vith SC	R		
	(3)	RC in series w	ith SC	R		(4)	RC in parallel	with S	CR		
181.	The	effective resista	nce be	etween te	rminal	s A and	B in the below	figure	is		
	(1)	г				20					
	(2)	2r		-Im	~ FVV	L	В		-		
	(3)	3r		r	1	W	_				
	(4)	4r									
182.	If I b	e the current, C	be the	capacita	nce and	V be t	he potential dif	ference	s, the I/C	V will ha	ve the
	(1)	Time	(2)	Power		(3)	Frequency	(4)	Reactiv	e Power	
183.	Inas	series R-C circu	it exci	ted by a	DC vol	tage E,	, the initial curr	ent is			
	(1)	E R	(2)	0	20	(3)	$\frac{E}{C}$	(4)	$\frac{\mathbf{C}}{\mathbf{E}}$		O#
						27-B			767		(EEE)

Set Code :	T2
Booklet Code :	В

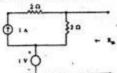
				and the second second second second second	
184	The strength of	of electromagnet	can be	increased	by

- (1) Decreasing the length of the conductor (2) Increasing the length of the conductor
- (3) Increasing the number of turns
- (4) Decreasing the number of turns

185. Tesla is a unit of

- (1) Flux
- (2) Field strength (3) Current
- (4) Flux density

186. According to joule's law heat produced by an electric current is proportional to


- (1) square of the resistance
- (2) square of the current

(3) potential difference

(4) square of the time

187. The Thevenin's equivalent resistance R for given below network is

- (1) 1 Ω
- (2) 2 Q
- (3) 4 Q
- (4) Infinity

188. In a differential compound generator, the series field turns are provided on

- (1) Armature
- (2) Commutator
- (3) Interpole
- (4) Main pole

189. The function of the commutator in a dc machine is

- (1) to change alternating current to direct current
- (2) to improve commutation
- (3) for easy speed control
- (4) to change alternating voltage to direct voltage

190. If N is the speed and P is number of poles, then the frequency of induced e.m.f in DC generator will be

Set Code :	T2
Booklet Code :	В

191.	The demagnetizing flux in de generator									
		1) Increases e.m.f				Decreases e.m.f				
	(3)	3) Increases speed			(4)	Decreases speed				
192.	. If T _a be the torque and I _a the armature current for a dc series motor, then which of the following relation is valid before saturation									
	(1)	$T_{a}\alpha I_{a}$	(2)	$T_a\alpha(1/I_a)$	(3)	$T_a\alpha(I_a^2)$	(4)	$T_a \alpha$	(1/1,)2)	
193.	What will happen if the back e.m.f of a DC motor vanishes suddenly									
	(1)	The motor will stop			(2)	The motor will continue to run				
	(3)	The armature may burn			(4)	The motor will run noisy				
194.	. The mechanical power developed by a DC motor is equal to									
		Power input + losses			(2)	Back e.m.f × armature current				
	(3)	Power output × losses			(4)	Power output × efficiency				
195.	. Neglecting saturation, if current taken by a series motor is increased from 10A to 12A, the percentage increase in its torque is									
	0.00	20%	4	44%	(3)	30.5%	(4)	16.6	%	
196.	Dwn	amometer type i	nstrur	nent have						
		Dynamometer type instrument have (1) Cramped scale at the beginning				Cramped at	the end			100
	200	Cramped at the middle			(2)	Uniform scale				
	(5)	Cramped at the middle		(4)	Omform see		Jun			
197.	. To measure a signal of 10 mV at 75 Hz, which one of the following instrument can be used									
	(1)	cathode ray oscilloscope			(2)	VIVM				
	(3)	Moving Iron voltmeter			(4)	digital multimeter				
198.	Which one of the following a passive transducer									
	(1)	piezolectric	(2)	thermocouple	(3)	photovoltai	c cell	(4)	LVDT	
										111222
					90 P					APPEN.

Set Code : T2

Booklet Code : B

- 199. The voltage coil of a single phase house energy meter
 - (1) is highly resistive
 - (2) is highly inductive
 - (3) is highly capacitive
 - (4) has a phase angle equal to load power factor angle
- 200. The effective value of a triangular wave is
 - (1) Max. value

(2) $\sqrt{3}$ (Max. value)

(3) $\frac{\sqrt{3}}{\text{Max, value}}$

(4) $\frac{\text{Max. value}}{\sqrt{3}}$