(EIE) ELECTRONICS AND INSTRUMENTATION ENGINEERING INSTRUCTIONS TO CANDIDATES

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on
 the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet, BESIDES WRITING,
 THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE
 HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE
 SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- Immediately on opening this Question Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- 3. Use of Calculators, Mathematical Tables and Log books is not permitted.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.
- The OMR Response Sheet will not be valued if the candidate :
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he/she enters his/her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

1-D

(EIE)

1. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$

- (1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$ (4) $\sqrt{\frac{x}{y}}$

The derivative of e^x with respect to \sqrt{x} is

- (1) $\frac{2\sqrt{x}}{e^x}$ (2) $2\sqrt{x}e^x$ (3) $\frac{e^x}{2\sqrt{x}}$

The equation of the normal to the curve y = 5x⁴ at the point (1, 5) is

- (1) x + 20y = 99 (2) x + 20y = 101 (3) x 20y = 99 (4) x 20y = 101

The angle between the curves $y^2 = 4x$ and $x^2 + y^2 = 5$ is

- (1) $\frac{\pi}{4}$
- (2) tan-1(2) (3) tan-1(3)
- (4) tan-1(4)

5. If $u = x^3 y^3$ then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$

- (1) $6(x^3+y^3)$ (2) $6x^3y^3$ (3) $6x^3$

6. $\int \csc x \, dx =$

- log (cosec x + cot x) + C
- (2) log (cot x/2) + C

(3) $\log (\tan x/2) + C$

(4) $-\csc x \cdot \cot x + C$

Set Code : T2 Booklet Code :

7.
$$\int_0^{\pi} \cos^{11} x \, dx =$$

- (1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$
- (3) $\frac{\pi}{4}$

8.
$$\int f^{1}(x) [f(x)]^{n} dx =$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2)
$$\frac{[f(x)]^{n+1}}{n+1} + C$$
 (3)
$$n[f(x)]^{n-1} + C$$
 (4)
$$(n+1)[f(x)]^{n+1} + C$$

$$9. \qquad \int \frac{dx}{(x+7)\sqrt{x+6}} =$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

$$(1) Tan^{-1}(\sqrt{x+6}) + C$$

$$(2) 2Tan^{-1}(\sqrt{x+6}) + C$$

$$(3) Tan^{-1}(x+7) + C$$

$$(4) 2Tan^{-1}(x+7) + C$$

(3)
$$Tan^{-1}(x+7)+C$$

(4)
$$2Tan^{-1}(x+7)+C$$

10.
$$\int \tan^{-1} x \, dx =$$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$
 (2) $\frac{1}{1+x^2} + C$

(2)
$$\frac{1}{1 \cdot 1 \cdot 2} + C$$

(3)
$$x^2 Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1 + x^2} + C$$

$$11. \quad \int \frac{dx}{1+e^{-x}} =$$

(1)
$$\log (1+e^{-s}) + C$$

(3) $e^{-s} + C$

12.
$$\int_{-\pi}^{\frac{\pi}{2}} \sin|x| \, dx =$$

- 13. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units (4) 8 sq. units

- 14. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (3) 3
- (4) 2

- 15. The degree of $\left[\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2\right]^2 = a\frac{d^2y}{dx^2}$ is
 - (1) 4
- (2) 2
- (3) 1
- 16. The family of straight lines passing through the origin is represented by the differential equation
- (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0
- 17. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + hv + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- - (3) Linear (4) Legender
- 18. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $ye^{-x^2} = x + c$ (2) $ye^x = x + c$ (3) $ye^{x^2} = x + c$ (4) y = x + c

- 19. The complementary function of $(D^3+D^2+D+1)y = 10$ is
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$
- (2) $C_1 \cos x + C_2 \sin x + C_1 e^x$
- (3) $C_1 + C_2 \cos x + C_3 \sin x$
- (4) $(C_1 + C_2 + C_3)e^{t}$
- 20. Particular Integral of $(D-1)^4y = e^x$ is

- (1) $x^{4}e^{x}$ (2) $\frac{x^{4}}{24}e^{-x}$ (3) $\frac{x^{4}}{12}e^{x}$ (4) $\frac{x^{4}}{24}e^{x}$

21. If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $A^4 =$

- (1) 31
- (2) 91
- (3) 271
- (4) 811
- 22. If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x is
 - (1) 1
- (2) 2
- (3) 3
- (4) 4
- 23. What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3
 - (1) 64
- (2) 268
- (3) 512

24. If
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then $|A| = 1$

- (1) 1
- (2) 2
- (3) 3
- 25. The solution of a system of linear equations 2x y + 3z = 9, x + y + z = 6, x y + z = 2 is
 - (1) x = -1, y = -2, z = -3

(3) x = 2, y = 1, z = 3

- 26. If $\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x ai}$ then A =______, B =______.
 - (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

27. If
$$\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$$
 then $\sum_{i=1}^3 A_i$ is equal to

- (1) A,
- (2) 2A,
- (3) 4A,

- 28. The period of the function $f(x) = |\sin x|$ is
 - (1) n
- (2) 2π
- (3) 3π

- (1) 1
- (2) 0
- (3) 2

(1)
$$\frac{\sqrt{5}+1}{4}$$

(2)
$$\frac{\sqrt{5}+1}{2}$$

(3)
$$\frac{\sqrt{5}-1}{2}$$

(1)
$$\frac{\sqrt{5}+1}{4}$$
 (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$

31. If
$$A+B+C = \pi$$
, then $\sin 2A + \sin 2B + \sin 2C =$

4 cosA sinB cosC

(2) 4 sinA cosB sinC

(3) 4 cosA cosB cosC

(4) 4 sinA sinB sinC

(1) $x = n\pi, n \in \mathbb{Z}$

- (2) x=0
- (3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$
- (4) $x = n\pi + \alpha, n \in \mathbb{Z}$

The value of Tan-1 (2) + Tan-1 (3) is

- (1) $\frac{\pi}{4}$
- (2) $\frac{\pi}{2}$
- (3) $\frac{\pi}{2}$

34. If the sides of a right angle triangle are in A.P., then the ratio of its sides is

- (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5
- (4) 4:5:6

35. The value of
$$r.r_1.r_2.r_3$$
 is

- ∆²
- (2) A-2
- (3) Δ⁻³

36.
$$\frac{1}{r1} + \frac{1}{r2} + \frac{1}{r3} =$$

- (1) $\frac{1}{r}$ (2) $\frac{1}{2r}$

- (1) cos-1 (2/9)
- (2) cos-1 (2/5)
- (3) cos-1 (7/9) (4) cos-1 (1/3)

- (1) $\sqrt{2}e^{-\pi/4}$ (2) $\sqrt{2}e^{\pi/4}$ (3) $\sqrt{2}e^{\pi/2}$ (4) $\sqrt{2}e^{-\pi/2}$

39. If
$$1, \omega, \omega^2$$
 be the cube roots of unity, then the value of $2^{\omega^2}.2^{\omega^5}.2^{\omega}$ is

- (1) w
- (2) w2
- (3) 1
- (4) 0

40. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2-c}$ (2) $\sqrt{f^2-c}$ (3) $2\sqrt{g^2-c}$ (4) $2\sqrt{f^2-c}$

- (1) (3, 1)
- (2) (1, 3)
- (3) (-3,-1) (4) (-1,-3)

42. The radius of the circle
$$\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$$
 is

(1) $2c$ (2) $4c$ (3) $c/2$

- (4) c

43. The parametric equations of the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 are

- (1) $x = a \sec\theta, y = b \tan\theta$
- (2) $x = b \sin\theta$, $y = a \cos\theta$
- (3) $x = a \cos\theta, y = b \sin\theta$
- (4) $x = a \csc\theta, y = b \cot\theta$

- 44. The equation of the directrix of the parabola $2x^2 = -7y$ is
 - (1) 8y+7=0
- (2) 8y-7=0
- (3) 7y+8=0
- (4) 8x-7=0
- 45. The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is
- (2) $c^2 = a^2m^2 b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

- 46. $Lt \frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$ is
 - (1) 3

- (2) 2 (3) 4 (4) 1
- 47. $\log i =$ (1) $\pi/2$ (2) $\pi/4$ (3) $i\pi/2$ (4) $i\pi/4$

- 48. $\frac{d}{dx}[\log_7 X] =$
- (1) $\frac{1}{x}$ (2) $X \log_7^6$ (3) $\frac{1}{x} \log_7^7$ (4) $\frac{1}{x} \log_7^6$

- 49. $\frac{d}{dx}[2\cosh x] =$

 - (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

- 50. $\frac{d}{dx} \left[\cos^{-1} \left(\frac{1-x^2}{1+x^2} \right) \right] =$

- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$

Set Code :	T2
Booklet Code :	D

				PI	HYSIC	CS		
51.	Ifa	spring has time	period	T, and is cut in	ito n eq	ual parts, then the	he time	period will be
	(1)	$T\sqrt{n}$	(2)	$\frac{T}{\sqrt{n}}$	(3)	nT .	(4)	T
52.		en temperature	increas	es, the frequen	cy of a	tuning fork		
	(1)	increases						
	(2)	decreases						
	(3)	remains same						
	(4)	increases or d	ecrease	es depending or	n the ma	aterials		
53.	Ifa	simple harmon	ic moti	on is represente	ed by $\frac{d}{a}$	$\frac{d^2x}{dy^2} + \alpha x = 0$, its	time p	eriod is
		_	022		7754203	2π	700	2π
	(1)	$2\pi\sqrt{\alpha}$	(2)	2πα	(3)	$\frac{2\pi}{\sqrt{\alpha}}$	(4)	$\frac{2\pi}{\alpha}$
54.	The	inema hall has v total absorption 850 w-m ²	n in the			red to have reve 8.250 w-m ²		ion time of 1.5 seconds. 0.825 w-m ²
55.	Toa	bsorb the sound	d in a ha	Ill which of the	followi	ing are used		
	(1)	Glasses, store	es.		(2)	Carpets, curta	ins	
	(3)	Polished surfa	aces		(4)	Platforms		
56.	IfN	represents avag	adro's	number, then th	ne numb	per of molecules	s in 6 gr	m of hydrogen at NTP is
	(1)		(2)		(3)		1 4 4 5 5	N/6
57.	The	mean translatio	onal kin	etic energy of a	ı perfec	t gas molecule	at the te	emperature T K is
	(1)	$\frac{1}{2}kT$	(2)	kT	(3)	$\frac{3}{2}kT$	(4)	2kT
					10-D			

Set Code :	T2
Booklet Code :	D

3053		The state of the	at give	an to a body wn	ich rais	es its temperati	ure by I	°C	
) water equiv:			(2	thermal he	at capac	eity	
	(3) specific hea	it		(4	temperatur			
59). Du	aring an adiaba solute temperat	tic pro ure. T	cess, the pressu he ratio <i>Cp/Cv</i>	ire of a for gas	gas is found to	be proj	portional to the co	ube of i
	(1)	$\frac{3}{2}$	(2	$\frac{4}{3}$	(3) 2	(4	$\frac{5}{3}$	
60	. Cla	adding in the op	tical f	iber is mainly u	sed to				
	(1)			from mechanic		2522			
	(2)			from corrosion		50.10163			
	(3)			from mechanic		eth			
	(4)	to protect the	fiber	from electroma	gnetic	guidance			
61,	(1) (2) (3)	same as that of same as that of same as that of same as that of same as that of	ons or of later of pres of work	nt heat sure	relation	A/B = <i>m</i> where	e m is lii	near mass density	and A is
62.	The	dimensional fo	rmula	of capacitance	in term	s of M, L, T and	d I is		
		$[ML^2T^2l^2]$		$[ML^{-2}I^{q}l^{2}]$		[M ¹ L ² T ³ I]		$\left[M^{-1}L^{-2}T^4I^2\right]$	
63.				ion cosines of a					
	(1)	l+m+n=1	(2)	$l^2+m^2+n^2=$	1 (3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	lmn = 1	
64.	The	angle between i	+j and	j+k is					
	(1)	0°	(2)	90°	(3)	45°	(4)	60°	
					H-D				

65.	A particle is moving eastwards with a velocity of 5 ms ⁻¹ . In 10 seconds the velocity changes to
	5 ms ⁻¹ northwards. The average acceleration in this time is

- (1) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-west

- (3) $\frac{1}{2}$ ms⁻² towards north
- (4) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-east

- Force varies with time in a quadratic manner.
- Force is time-dependent.
- (3) The velocity of the particle is proportional to time.
- (4) The displacement of the particle is proportional to t.
- A shell of mass m moving with a velocity v suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is
 - (1) v
- (2) 2v
- (3) 3v/4
- (4) 4v/3

- (1) 9.8 ms⁻¹
- (2) 10.2 ms⁻¹
- (3) 18.6 ms⁻¹
- (4) 19.6 ms⁻¹

- (1) $\frac{\pi u^2}{g^2}$ (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ (4) $\frac{\pi u}{g^4}$

Set Code :	T2
Booklet Code :	D

71.		en a bicycle is in motion, the force of a that it acts	frictio	n excreted by the ground on the two wheels i
	(1)	In the backward direction on the fron	t whee	and in the forward direction on the rear whee
	(2)	In the forward direction on the front	wheel a	and in the backward direction on the rear whee
	(3)	In the backward direction on both the	e front	and the rear wheels
	(4)	In the forward direction on both the	front a	nd the rear wheels
72.	In a	perfectly inelastic collision, the two b	odies	
	(1)	strike and explode	(2)	explode without striking
	(3)	implode and explode	(4)	combine and move together
73.		er the action of a constant force, a part er is	icle is	experiencing a constant acceleration, then the
	(1)	zero	(2)	positive
	(3)	negative	(4)	increasing uniformly with time
74.	Con	sider the following two statements:		
	A:	Linear momentum of a system of par	rticles	is zero.
	B:	Kinetic energy of a system of particl	es is z	ero.
	Ther	1		
	(1)	A implies B & B implies A	(2)	A does not imply B & B does not imply A
	(3)	A implies B but B does not imply A	(4)	A does not imply B but B implies A
75.		engine develops 10 kW of power. How ht of 40 m? (Given g = 10 ms ⁻²)	v mucl	h time will it take to lift a mass of 200 kg to a
	17300		17-52-51	

Set Code :	T2
Booklet Code :	D

CHEMISTRY

76.		rater sample sho ns of calcium ca			ng/litr	g/litre of magnesium sulphate. Then, its hardness in				
		1.0 ppm		1.20 ppm	(3)	0.60 ppm	(4)	2.40 ppm		
77.	Sod	a used in the L-	S proce	ess for softening	of wa	ter is, Chemicall	y.			
	(1)	sodium bicarb	onate		(2)	sodium carbon	ate de	cahydrate		
	(3)	sodium carbon	nate		(4)	sodium hydrox	ide (4	0%)		
78.	The	process of ceme	entatio	n with zinc powe	der is l	cnown as				
	(1)	sherardizing	(2)	zincing	(3)	metal cladding	(4)	electroplating		
79.	Can	rosion of a meta	l is fas	test in						
	(1)	rain-water	(2)	acidulated water	er (3)	distilled water	(4)	de-ionised water		
80.	Whi	ch of the follow	ing is	a thermoset poly	mer?					
	(1)	Polystyrene			(2)	PVC				
	(3)	Polythene			(4)	Urea-formaldel	hyde r	esin		
81.	Che	mically, neopre	ne is							
	(1)				(2)	polyacetylene				
	(3)	polychloropre			(4)	poly-1,3-butadi	ene			
82.	Vulc	anization involv	es hea	ting of raw rubbo	er with					
		selenium elem			(2)	elemental sulph	ur			
	(3)	a mixture of Se	and el	emental sulphur	(4)	a mixture of sel	enium	and sulphur dioxide		
83.	Petro	ol largely contai	ins							
	(1)	a mixture of un	satura	ted hydrocarbon	s C,- (C.				
	(2)			toluene and xyle						
	(3)			hydrocarbons C						
	(4)			hydrocarbons C						
					14-D					

Set Code :	T2
Booklet Code :	D

84.	. Which of the following gases is largely responsible for acid-rain?								
	(1)	SO, & NO,			(2)	CO, & water v	apour		
	(3)	CO ₂ & N ₂			(4)	N ₂ &CO ₂			
85.	ВО	D stands for							
	(1)	Biogenetic Ox	ygen [Demand	(2)	Biometric Oxy	gen D	Demand	
	(3)	Biological Oxy	gen [Demand	(4)	Biospecific Ox	xygen	Demand	
86.	The	valency electron	nic co	nfiguration of P	hosph	orous atom (At.)	No. 15) is	
	(1)	$3s^23p^3$	(2)	3s1 3p3 3d1	(3)	$3s^23p^23d^1$	(4)	3s1 3p2 3d2	
87.	And	element 'A' of At	.No.1	2 combines with	an ele	ment 'B' of At.N	o.17.	The compound formed is	
	(1)	covalent AB	(2)	ionic AB ₂	(3)	covalent AB ₂	(4)	ionic AB	
88.	The	number of neutr	ons p	resent in the ato	m of so	Ba ¹³⁷ is			
	(1)	56	(2)	137	(3)	193	(4)	81	
89.	Hyd	rogen bonding i	n wate	er molecule is re	esponsi	ble for			
	(1) decrease in its freezing point				(2)	increase in its degree of ionization			
	(3) increase in its boiling point (4) decrease in its boiling point					g point			
90.	In th	e HCl molecule,	the b	onding between	hydro	gen and chlorine	is		
	(1)	purely covalent	(2)	purely ionic	(3)	polar covalent	(4)	complex coordinate	
91.	Pota	ssium metal and	potas	sium ions					
	1000	both react with			(2)	have the same	numbe	er of protons	
	(3)	both react with	chlor	ine gas	(4)	have the same	electro	onic configuration	
92.	stane	일하는 보다님이 얼마나가 나는 날아들었다.	of this	solution were pi	ipetted	out into another f	lask ar	made upto 100 ml in a nd made up with distilled solution now is	
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M	
					15-D				

ı	Booklet	Code	: 1	
				_
(4)	3.0 N			
de ie				

93	Con	centration of a	1.0 M s	olution of pl	nosphoric	acid in water i	s				
		0,33 N		1.0 N		2.0 N	(4)	3.0 N			
94.	Whi	ch of the follow	ving is	Lewis acid	?						
	(1)	Ammonia			(2)	Berylium chl					
	(3)	Boron trifluo	ride "		(4)	Magnesium	oxide				
95.	Whi	ch of the follow	wing co	nstitutes the	compone	nts of a buffer	solution	1?			
	(1) Potassium chloride and potassium hydroxide										
	(2)	Sodium aceta									
	(3)	Magnesium s									
	(4)	Calcium chlo	ride and	d calcium acc	etate						
96.	Whi	ich of the follo	wing is	an electrolyt	e?			100 AUX			
		Acetic acid		Glucose		Urea	(4)	Pyridine			
97.	Calc	culate the Stan Cu/Cu*2 = (-) 0.	dard en 34 V.	of the cell	, Cd/Cd+2	//Cu+2/Cu give			0.44V and		
	(1)	(-) 1.0 V	(2)	1.0 V	(3)	(-) 0.78 V	(4)	0.78 V			
98.	A so	olution of nicke	el chlor	ide was elect	trolysed u	sing Platinum	electroc	les. After ele	ctrolysis.		
	(1)	nickel will be	deposi	ted on the ar	node						
	(2)	Cl, gas will b	e libera	ted at the cat	hode						
	(3)	H, gas will be	e liberat	ed at the and	de				2.5 92		
	(4)	nickel will be	e depos	ted on the ca	thode						
99.	Wh	ich of the follo	wing m	etals will une	dergo oxio	dation fastest?		SES			
		Cu		Li		Zinc	(4)	Iron			
100.	Wh	ich of the follo	wing ca	nnot be used	for the st	erilization of d	lrinking	water?			
	(1)	Ozone	0.000 J 0 .00		(2)	Calcium Ox	ychlorid	e			
	(3)	Potassium C	hloride		(4)	Chlorine wa	ter				

Set Code :	T2
Booklet Code :	D

(EIE)

ELECTRONICS AND INSTRUMENTATION ENGINEERING

10	1. Ind	luction heating may be employe	d	
	(1)	for annealing of brass	(2)	for heating of plastics
	(3)	in a hot plate	(4)	for heating of wood
102	2. The	e solar cell is a type of	devices	
	(1)	photovoltaic	(2)	photoconductive
	(3)	photo emissive	(4)	electromotive
103	. Wh	ich of the following is false wi	th respect to R	oot locus
	(1)	It is used to determine the sta	ability of the sy	stem
	(2)	It is designed to find the dam	ping ratio of th	e system
	(3)	It is used to calculte the natur		
	(4)	It is used to determine the im		
104	. The		rion is a neces	ssary and sufficient method to establish the
	(1)	Multiple-input, single-output,	non-linear tim	e invariant
	(2)	Multiple-input, multiple-outp		
	(3)	A single-input, single-output,		
	(4)	A single-input, multiple-output		
105.	Ope	n loop system		
	(1)	shows Negative feed back		
	(2)	can counter act aganist disturb	ances	
	(3)	the controlled variable does no		
	(4)	cannot become unstable-as lo		olled object is stable

Set Code :	T2
Booklet Code :	D
27	

(EIE)

106.	Whi	ch type of impurity is added to	form a n-type	extrinsic semiconductor
	(1)	Aluminum	(2)	Indium
	(3)	Gallium	(4)	Arsenic
107.	The	penetration depth of the deple to the doping concentra		within a particular side of the pn junction is
	(1)	inversely proportional	(2)	proportional
	(3)	independent	(4)	square root
108.	Pres	ence of emitter circuit bypass of	capacitor adv	ersely affects the
	(1)	low frequency response	(2)	midband response
	(3)	high frequency response	(4)	response over the complete frequency range
109.	The	higher the frequency of the alte	rnating curre	nt in the inductance, the eddy current loss is
		less	(2)	more
	(3)	medium	(4)	not change
110.	Und	er reverse bias, zener diode can	be used as a	
	(1)	current regulator	(2)	voltage regulator
	(3)	frequency regulator	(4)	phase regulator
111.	Both	h thejunctions of a transistor are	e in forward b	oias then it is operated inregion
		cut-off	(2)	active
	(3)	saturation	(4)	cross-over
112.	Afte	er applying voltage between sou	rce and drain	terminals of a JFET, the channel becomes
	(1)	uniform	(2)	nonlinear
	(3)	linear	(4)	wedge shaped

www.manaresults.co.in

Set Code :	T2
Booklet Code :	D

113.	The	number of RC se	ection	s required in	phase shi	ift oscillator is				
	(1)	1	(2)	2	(3)	5	(4)	6		
114.	Whi	ch of the followi	ng os	cillator uses	both posit	ive and negat	ive feedb	ack		
	(1)	RC phase shift			(2)	Wein bridge				
	(3)	LC oscillator			(4)	Crystal				
115.	Cros	ss-over distortion	n can	be eliminated	d by biasir	ng the circuit	in			
	(1)	Class A	(2)	Class B	(3)	Class C	(4)	Class AB		
116.	Mor	ostable multivib	rator	requires	typ	pe of trigger pulse.				
	(1)	positive spikes			(2)	negative spi	kes			
	(3)	zero spike			(4)	no trigger p	ulse is re	quired		
117.	If in	a rectifier, the rip	ple v	oltage is 100	mV and th	e de value is l	0V, then	the ripple factor is given		
	(1)	0.01	(2)	0.02	(3)	0.001	(4)	0.0002		
118.	The	larger the value	of the	filter capaci	tor					
	(1)	Larger the peak	-to-p	eak value of	the ripple	voltage				
	(2)	Larger the peak	curre	ent in the rec	tifying die	ode				
	(3) Longer the time that the current pulse flows through the diode									
	(4)	Smaller the dc	voltag	ge across the	load		-			
119.	In a		s the v	oltage across	s two base	terminals, the	emitter	potential at peak point is		
	(1)	ηV_{BB}			(2)	ηV_D				
	(3)	$\eta V_{BB} + V_{D}$			(4)	$\eta V_D^{+}V_{BB}$				
					19-D			(EIE)		

								Set Code : T2	۲
								Booklet Code : D	7
20.	The	output of gate is	low i	f and only if all it	s inpu	its are equal			
	(1)	Ex-OR	(2)	AND	(3)	OR	(4)	NOR	
21.	Anı	n-bit register req	uires	number o	of Flip	-Flops.			
	(1)	2n	(2)	n + 1	(3)	2 ⁿ	(4)	n	
122.	The	counters can be	used i	n the measureme	ent of				
	(1)	voltage	(2)	time	(3)	distance	(4)	length	
123.	The	memory which	requir	es a refresh cycle	e is				
		PROM			(2)	Static RAM			
	(3)	Dynamic RAM	ı		(4)	Magnetic tape			
124.	Whi	ch of the follow	ing is l	known as half-ad	lder			al a	
	(1)	XOR gate			(2)	XNOR gate			
	(3)	NAND gate			(4)	NOR gate			
125.		counter is connec	cted us	sing six flip-flops	, then	the maximum nu	mber	of states that the counter	er
	(1)	6	(2)	256	(3)	8	(4)	64	
126.	The	number of flip-	flops r	required for a mo	d-16	ring counter are			
	(1)		(2)			10	(4)	16	
127.	The	digital operation	ns suci	h as AND, OR, N	NOTe	tc., can be perfor	med l	by using	
		Amplifiers				switches			

20-0

(3) rectifiers

(4) oscillators

Set Code :	T2
Booklet Code :	D

128	. Inc	e resolution of an A/D converter i	is determine	d by				
	(1)	Start conversion time						
	(2)	The number of bits in the input	word					
	(3)	The number of bits in the output	at word					
	(4)	The type of interfacing						
129	. The	reference and output voltages in	the ladder ty	ype D/A converter are respectively				
	(1)	Both are positive	(2)	both are negative				
	(3)	negative and positive	(4)	positive and negative				
130	. Am	nedium wave transmitter works in	the frequen	cy range of				
	(1)	100 Hz to 100 KHz	(2)	500 KHz to 1600 KHz				
	(3)	1500 MHz to 3800 MHz	(4)	4235 MHz to 5000 MHz				
131		nrrier of 1200 KHz is amplitude m band frequencies are	odulated by	an AF signal from 200 HZ to 5 KHz. The upper				
	(1)	1205 KHz to 1200 KHz	(2)	1200 KHz to 1195 KHz				
	(3)	1200.2 KHz to 1205 KHz	(4)	1202 KHz to 1205 KHz				
132	One	of the following is a disadvantag	ge of VSB sy	stem				
	(1)	It conserves bandwidth resultin	g in a saving	of 2 MHz per channel over a DSB system				
	(2)	It overcomes the problem of lov	w video freq	uency attenuation				
	(3)	It results in power boost of low	video frequ	encies				
	(4)	It possess the advantages of bot	h DSB and S	SSB system				
133.	The	e is a network of resistors containing only two values.						
	(1)	binary divider	(2)	binary ladder				
	(3)	analog divider	(4)	analog ladder				
			21-D	(EIE)				

Set Code :	T2
Booklet Code :	D

134.	The	voltage gain o	f the vo	ltage followe	r circuit u	sing op-amp	is		
	(1)	$1 + R_f/R_i$	(2)	R_f/R_i	(3)	R_i/R_f	(4)	one	
135.	Whi	ich of the follo	wing ci	rcuit does no	t use a PL	L?			W
	(1)	FM demodul	ating		(2)	frequency m	nultiplyin	g	
	(3)	frequency sy	nthesis		(4)	voltage regu	ılation		
136.	The	pulse width of	a astabl	e multivibrat	or is give	n by			
		0.48 RC		0.48 R/C		1.38 RC	(4)	1.38 R/C	
137.	Hov	v many op-am	o does it	take to const	truct an in	strument amp	olifier		
	(1)	Salara and an analysis and a second	(2)		(3)		(4)	6	
138.	The	resolution of a	four bi	t DVM is					
	(1)	0.1V	(2)	0.01 V	(3)	0.001 V	(4)	0.0001 V	
139.	Succ	cessive approx	imation	DVM is also	called				
9	(1)	dual slope D	VM		(2)	differential	voltmete	r	
	(3)) potentiometric DVM			(4)	ramp type D	VM		
140.	AC	RO is generall	y used to	o measure					
	(1)	temperature			(2)	pressure			
	(3)	amplitude			(4)	all the above	3		
141.		en two periodic ied to CRT, the					out of pl	nase with each	other are
	(1)	a straight line	2		(2)	circle			
	(3)	ellipse			(4)	parabola		(4)	
					22-D	10			(EIE)

Set Code :	T2
Booklet Code :	D

	5000	erator.	70 (2000)					
	(1)	pulse	(2)	sweep	(3)	square wave	(4)	sine wave
143	Q-N	Meter is used to	detern	nine	of a	component.		
	(1)	frequency	(2)	phase angle	(3)	quality factor	(4)	all
144.	Wh of a	ich of the follow Q-meter?	ing m	ethod is used to	conne	ct the unknown	compo	onent to the test termin
	(1)	direct	(2)	series	(3)	parallel	(4)	all
145.	In a	digital frequenc	y mete	er, the assembly	consis	ting of two AND	gates	and the two flip-flops
	(1)	decade counter	6		(2)	gate control se	tup	
	(3)	Schmitt trigger			(4)	read counter	osetini	
46.	In in	strumentation th	ne para	ameter being m	easure	is called		
	(1)	error detector	(2)	source	(3)	measurand	(4)	sink
			dicate	d value to the tr	ne valu	e of the quantity	is call	led
47.	The	nearest of the inc				a see me dominered		
		precision		error		accuracy		sensitivity
	(1)		(2)	error	(3)	accuracy		
48.	(1) Pirar	precision ni guage is an ex	(2) ample	error	(3) ransdu	accuracy	(4)	
48.	(1) Pirar (1)	precision ni guage is an ex	(2) ample (2)	oft capacitive	(3) ransdu	accuracy cer.	(4)	sensitivity

23-D

(EIE)

Set Code :	T2
Booklet Code :	D

150.	Mul	titurn potentio	meter c	an measure a n	naximur	n of	degre	es.	
		30		300		360		3500	
151.	The	poissions ratio	for all	strain guage m	aterial l	ies between			
	(1)	0-0.5	(2)	0-1	(3)	0-1.5	(4)	0-2	
152.	For	capacitive tran	sducers	the equation fo	or the cap	pacitive of a pa	rallel pl	ate capacitor	is given by
	(1)	$C = d / \in A$	(2)	$C = d \in /A$	(3)	$C = \in A/d$	(4)	$C = \in Ad$	
153.	Mic	rophone is a_		_ type of trans	sducer.				
	(1)	capacitive			(2)	resistive			
	(3)	inductive			(4)	mechanical			
154.	The	pH of a soluti	on is pr	oportional to_		_			
	(1)	log[H*]	(2)	-log[H*]	(3)	1/log[H*]	(4)	-log[H ⁻]	
155.	The	pH of blood fo	or a nor	nal human beir	ng is				
	(1)	acidic			(2)	basic			
	(3)	neutral			(4)	highly acidic			
156.	Ina	magnetic flow	metert	he induced vol			n by		
	(1)	E=BC/LV			15000	E=BL/CV			
	(3)	E=(B+L+C+	V)		(4)	E=BCLV			
157.	Wh	ich of the follo	wing ca	n be used as p					100
	(1)	Rochelle sal	t		(2)	ceramics A&	В		
	(3)	lithium sulph	ate		(4)	all			
					24-D				(EIE)
					24-0				200

Set Code : T2

Booklet Code : D

18.		particles h	nave n	eutral charge.					
1	(1)	Alpha			(2)	Beta			
	(3)	Gamma			(4)	Positrons			
59.		is also cal	lled a v	variable area r	meter.				
	(1)	Rotameter			(2)	Mmanomete	r		
	(3)	Venturimeter			(4)	Orficemeter			
60.		is also a	unit o	f temperature					
		Candela		Ampere	(3)	Volt	(4)	Rankine	
161.	The	Reynolds numb	er for t	urbulent flow	is.			2	
		1000		2000	(3)	3000	(4)	4000	
162.	The	response of a ti	me cor	nstant elemen	t for a ste	p change in ir	nput is		
w0.0000		Unity				Zero			
	(3)	Exponential			(4)	Infinity			
163.	Res	et action is anot	her na	me forc	ontrol me	ode.			
		Two-position				Proportiona	ıl		
	(3)	Derivative			(4)	Integral			
164	. AP	ID control mode	has						
	(1)	Faster respons	se		(2)	Slower resp	onse		
		More dead tin			(4)	High rise tii	me		
165	. A P	-controller has a	a gain o	of 50. Its prop	ortional l	and is			
	(1)			3	(3)		(4)	1	
					25-D				(EII

www.manaresults.co.in

								Booklet (Code : L
166.	Diff	erentiate gap is	intent	ionally incorpo	orated in	some process	es to pr	event	effect
		Excessive cycl			(2)	Saturation			
	(3)	Clamping			(4)	Aliasing			
167.		rocess controlle			ving can	be used for si	gnals tra	ansmissio	n between t
	(1)	Electric	(2)	Pneumatic	(3)	Hydraulic	(4)	All	
168.	In p	neumatic contro	llers _	are use	d for ap	plying the sign	als fron	the sense	ors.
	(1)	Op-Amps	(2)	Gears	(3)	Bellows	(4)	Piston	
170	The second	6							
169.		forces that act o	n an a	ctuator are	(2)	Static friction	n forces		
	10000	Inertia forces			(2)				
	(3)	Thrust forces			(4)	All of the abo	ove		
170.	Whi	ich of the follow	ing di	strubances occ	ur in a p	rocess control	?		
	(1)	Transient			(2)	Set-point cha	nges		
	(3)	Load changes			(4)	All of the abo	ove		
171	Gen	erally in a casca	de cor	ntrol	mode i	s used in a sec	ondary	loop.	
	(1)		(2)			PD	(4)	PID	
172.	In a	ratio control sys	stem, t	he ratio factor	'K' lies	between	8	nd	
		1.3		0.3,3.0		3,30	(4)	1,100	
172	In d	istillation colum	inc	are se	narated				
173.			mia	are se		Oone solid &	one lin	nid	
		Two liquids					one nq	uiu	
	(3)	Two gases			(4)	None			

www.manaresults.co.in

Set Code :	T2
Booklet Code :	D

174.	An	element used t	to provid	le necessary	linear rota	ary motion fo	or a contro	ol valve stem is	s called
	(1)	Actuator			(2)	Plug			
	(3)	Spring			(4)	Bellows			
175.	Spe	ctroscopy dea	ls with th	ne study of	interaction	of	with m	atter.	
	(1)	Electromagn	netic radi	ations	(2)	current			
	(3)	frequency			(4)	density			
176.	Due	etarium lamps	are bette	r suited sou	urces in the		region.		
	(1)	UV	(2)	visible	(3)	IR	(4)	microwave	
177.	Ina	gas-liquid-chr	romatogr	aphy the ca	rrier phase	is			
	(1)	Solid	(2)	liquid	(3)	gas	(4)	all	
178.	The	efficiency of	a distilla	tion colum	n is express	sed in terms	of		
	(1)	Sample injec	ction		(2)	detector re	sponse		
	(3)	theoretical p	lates		(4)	type of sam	ple used		
179.	The	paramagnetic	gases are						
	(1)	Helium			(2)	Hydrogen			
	(3)	Nitrogen			(4)	Oxygen			
180.	Sing	gle focusing m	agnetic s	sector analy	ser is	degree	analyser.	87 4	
	(1)	90	(2)	180	(3)	270	(4)	360	
181.	Pape	er chromatogra	aphy is a	lso called _	8.5	chromatog	raphy.		
	(1)	partition	815		(2)	gas			
	(3)	liquid			(4)	adsorption			
					. 27-1)				(EJE

								Booklet Co	ode :	D
82	Flect	romvogram	potentials	are associa	ted with		activity			
Ozi		brain		muscle	(3)	heart	(4)	kidney		
183.	POR	ST wave is	associated	with	3					1
		EEG		ECG	(3)	EMG	(4)	EGG		
184.	The	principle io	ns present	in the body f	luids are					
		Sodium			(2)	Potassium				
		Chloride			(4)	All				
195	2051	control ha	s 1	register bank	is.					
103.		One		- Control of the cont	(2)	Two			30	
	04/08/1/1	Three			(4)	Four				
196	The	following h	its in IF re	gister disabl	e all interr	upts simultane	ously			
180		ETO		EA .	(3)	ES	(4)	ACC		
187	Lad	der diagram	are used in	1						
		PLC's			(2)	Computers				
		Micropro	cessor		(4)	Actuator				
188	. In n	nicrocontro	ller 8051,	the total no.	of three by	yte instruction	s are			
		17		45	(3)	49	(4)	111		
189			called a	PPI control	ler.					
	_	8251			(2)	8255				
	(3)				(4)	8259				

Set Code : T2

www.manaresults.co.in

Set Code :	T2
Booklet Code :	D

190	The	scratchpad area o	fRA	M of 8051 ha	bytes.						
	(1)	20	(2)	40	(3)	80	(4)	100			
191.	Thr	ee equal resistors o	f3Ω	each are star o	connecte	d. Their equivalent delta connected resistance is					
	(1)	1 Ω			(2)	12 Ω					
	(3)	6 Ω			(4)	9 Ω					
192.	Wh	ile finding theven	in's r	esistance, volt	tage sour	rces if any are set to zero by					
	(1)	short circuiting			(2)	Open circu	uiting				
	(3)	connecting in se	ries v	with load	(4)	connecting	g in paralle	l with load			
193.	Ina	self excited deger	nerate	or, the initial f	lux is pr	oduced due	to				
	(1)	the saturation of	core		(2)	eddy curre	nts				
	(3)	hysteresis			(4)	residual m	agnetism				
194.	Whi	Which of the following is a cause for the production of back emf.									
	(1)	generator action			(2)	motor acti	on				
	(3)	armature reactio	n		(4)	eddy curre	nts				
95.	The	effective value of	the i	nduced voltag	e in a tra	nsformer w	inding is re	presented by			
	(1)	4.44 fN ² \varphi_m			(2)	4.44 fN φ	m				
	(3)	4.44 fN B _m			(4)	4.44 fN φ _m	A	E (8)			
96.	Whi	ch of the followin	g sta	tement is true	with res	pect to sync	chronous m	otor			
le j	(1)	it is not self-star	ting								
	(2)	it is self-starting									
	(3)	it can run at any s	peed	6							
	(4)	it can run at a spe	eed c	lose to the syn	chronou	is speed					

29-D

(EIE)

				Booklet Code . L	_					
97.	Phot	todetectors are used in	switching	g circuits.						
	(1)	magnetic	(2)	electric						
	(3)	current	(4)	twilight						
98.	ALI	ED prepared with GaAs _{1-x} P _x	escolor.							
	(1)	blue	(2)							
	(3)	yellow	(4)	red						
99.	. Photo voltaic cells are two-terminal devices that vary their with exposure to l									
	(1)	7. P. B.	(2)							
	(3)	output voltage	(4)	output current						
200.		following all are true except welding	one with respec	ct to the advantages of projection welding or	vei					
	(1)	More than one weld can be	done at a time to	to obtain more output						
	(2)	The life of electrodes is less	s because of lov	w current density						
	(3)	The finish is good as the sur	rface remains ur	mindented by electrodes						
	(4)	and the second s								