ELECTRICAL AND ELECTRONICS ENGINEERING

INSTRUCTIONS TO CANDIDATES

Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on
the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING,
THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE
HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE
SHEET, DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.

2. Immediately on opening this Question Paper Booklet, check:

- a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
- (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.

3. Use of Calculators, Mathematical Tables and Log books is not permitted.

- 4. Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.

8. The OMR Response Sheet will not be valued if the candidate:

- (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
- (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.

(c) Adopts any other malpractice.

- 9. Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.

11. Timings of Test: 10.00 A.M. to 1.00 P.M.

- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.

14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

Set Code : T2

Booklet Code : B

Note:	(1)	Angwar	all	questions
voie:	(I)	Answer	uu	questions.

(1) 4 cosA sinB cosC

(3) 4 cosA cosB cosC

(3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$

(1) $x = n\pi, n \in \mathbb{Z}$

(2) Each question carries I mark. There are no negative marks.

If $A+B+C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$

The principal solution of Tanx = 0 is

- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.

(2) 4 sinA cosB sinC

(4) 4 sinA sinB sinC

(4) $x = n\pi + \alpha, n \in \mathbb{Z}$

(2) x=0

MATHEMATICS

3.	The value of Tan		19	× 79				
	$(1) \frac{\pi}{4}$	(2)	$\frac{\pi}{2}$	(3)	$\frac{\pi}{3}$	$(4) \frac{3\pi}{4}$		
4.	If the sides of a r	right angle	triangle ar	e in A.P., th	en the ratio o	of its sides is		
	(1) 1:2:3		2:3:4	(3)	3:4:5	(4) 4:5	:6	
5.	The value of r.r.	$r_{2}.r_{3}$ is	.*					
	The value of $r.r$. (1) Δ^2	(2)	Δ^{-2}	(3)	Δ^{-3}	(4) Δ^4		
6.	$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = $	*					*	
	•				1	1		

3-B

7	TC C L _ C	O 4L	41	· Camala A ia
/	If $a=6, b=5$	c=9 then	the value of	or angle A is
	11 4 0,0 0	,	min . mine .	A

- (1) $\cos^{-1}(2/9)$
- (2) cos⁻¹ (2/5)
- (3) $\cos^{-1}(7/9)$ (4) $\cos^{-1}(1/3)$

8. The polar form of complex number
$$1-i$$
 is

- (1) $\sqrt{2}e^{-i\pi/4}$ (2) $\sqrt{2}e^{i\pi/4}$
- (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$

9. If
$$1, \omega, \omega^2$$
 be the cube roots of unity, then the value of $2^{\omega^3}.2^{\omega^5}.2^{\omega}$ is

- (1) w
- (2) ω^2
- (3) 1
- (4) 0

10. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (2) $\sqrt{f^2-c}$ (3) $2.\sqrt{g^2-c}$ (4) $2.\sqrt{f^2-c}$

11. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is (2, 7), then the other end of the diameter is

- (1) (3, 1)
- (2) (1, 3)
- (3) (-3, -1) (4) (-1, -3)

12. The radius of the circle
$$\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$$
 is
(1) $2c$ (2) $4c$ (3) $c/2$

- (4) c

13. The parametric equations of the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 are

- (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta, y = a \cos\theta$
- (3) $x = a \cos\theta, y = b \sin\theta$
- (4) $x = a \csc\theta, y = b \cot\theta$

14. The equation of the directrix of the parabola
$$2x^2 = -7y$$
 is

- (1) 8y+7=0
- (2) 8y-7=0
- (3) 7y+8=0 (4) 8x-7=0

15. The condition for a straight line
$$y = mx + c$$
 to be a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

- (1) c = a/m (2) $c^2 = a^2m^2 b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

16.
$$Lt_{x\to 1} \frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$$
 is

- (1) 3

17.
$$\log i =$$

- (1) $\pi/2$
- (3) $i\pi/2$

18.
$$\frac{d}{dx}[\log_7 X] =$$

- (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_e^7$ (4) $\frac{1}{x} \log_7^e$

$$19. \quad \frac{d}{dx}[2\cosh x] =$$

- (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

$$20. \quad \frac{d}{dx} \left[\cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right] =$$

- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$

21. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$

- (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$ (4) $\sqrt{\frac{x}{v}}$

22. The derivative of e^x with respect to \sqrt{x} is

- (1) $\frac{2\sqrt{x}}{e^x}$ (2) $2\sqrt{x}e^x$ (3) $\frac{e^x}{2\sqrt{x}}$ (4) $\sqrt{x}.e^x$

- 23. The equation of the normal to the curve $y = 5x^4$ at the point (1, 5) is

- (1) x + 20y = 99 (2) x + 20y = 101 (3) x 20y = 99 (4) x 20y = 101
- 24. The angle between the curves $y^2 = 4x$ and $x^2 + y^2 = 5$ is
 - (1) $\frac{\pi}{4}$
- (2) $tan^{-1}(2)$
- (3) $tan^{-1}(3)$

- 25. If $u = x^3y^3$ then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$
 - (1) $6(x^3+y^3)$ (2) $6x^3y^3$
- (3) $6x^3$

- 26. $\int \csc x dx =$
 - (1) $\log(\csc x + \cot x) + C$
- (2) $\log(\cot x/2) + C$

(3) $\log (\tan x/2) + C$

(4) $-\csc x \cdot \cot x + C$

- 27. $\int_0^{\frac{\pi}{2}} \cos^{11} x \, dx =$
 - (1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$ (4) $\frac{128}{693}$

- 28. [f'(x).[f(x)]'' dx =
 - (1) $\frac{[f(x)]^{n-1}}{n-1} + C$ (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$

- $29. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$
 - (1) $Tan^{-1}(\sqrt{x+6})+C$
- (2) $2Tan^{-1}(\sqrt{x+6})+C$
- (3) $Tan^{-1}(x+7)+C$

(4) $2Tan^{-1}(x+7)+C$

Set Code: **Booklet Code:**

- $\int \tan^{-1} x \, dx =$
 - (1) $x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$ (2) $\frac{1}{1+x^2} + C$

(3) $x^2 . Tan^{-1}x + C$

(4) $x.Tan^{-1}x - \log \sqrt{1+x^2} + C$

- $31. \quad \int \frac{dx}{1+e^{-x}} =$
 - (1) $\log (1+e^{-x}) + C$ (3) $e^{-x} + C$

- $32. \quad \int_{-\pi}^{\frac{\pi}{2}} \sin|x| \, dx =$
 - (1) 0
- (2) 1
- (3) 2

- 33. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- 34. The order of $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (3) 3

- 35. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{3}{2}} = a \frac{d^2 y}{dx^2}$ is
 - (1) 4
- (2) 2
- (3) 1
- 36. The family of straight lines passing through the origin is represented by the differential equation

 - (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0

- 37. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + hy + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- 38. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $y \cdot e^{-x^2} = x + c$ (2) $y e^x = x + c$ (3) $y e^{x^2} = x + c$ (4) y = x + c

- 39. The complementary function of $(D^3+D^2+D+1)y = 10$ is

 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$ (2) $C_1 \cos x + C_2 \sin x + C_3 e^{x}$ (3) $C_1 + C_2 \cos x + C_3 \sin x$ (4) $(C_1 + C_2 x + C_3 x^2) e^{x}$
 - $(3) \quad C_1 + C_2 \cos x + C_3 \sin x$
- 40. Particular Integral of $(D-1)^4y = e^x$ is

 - (1) $x^4 e^x$ (2) $\frac{x^4}{24} e^{-x}$ (3) $\frac{x^4}{12} e^x$ (4) $\frac{x^4}{24} e^x$

- 41. If $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, then $A^4 = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
 - (1) 3I
- (2) 91
- (3) 27I
- 42. If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x is
- (2) 2
- (3) 3
- 43. What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3
 - (1) 64
- (2) 268
- (3) 512
- (4) 256

44. If
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then $|A| =$

- (1) 1 .
- (2) 2
- (3) 3
- 45. The solution of a system of linear equations 2x y + 3z = 9, x + y + z = 6, x y + z = 2 is
 - (1) x = -1, y = -2, z = -3
- (2) x = 3, y = 2, z = 1

(3) x = 2, y = 1, z = 3

- (4) x = 1, y = 2, z = 3
- 46. If $\frac{1}{r^2 + a^2} = \frac{A}{r + ai} + \frac{B}{r ai}$ then A = _____, B = _____.
 - (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

- 47. If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then $\sum_{i=1}^3 A_i$ is equal to
 - (1) A,
- (2) $2A_2$ (3) $4A_2$ (4) $4A_1$

- 48. The period of the function $f(x) = |\sin x|$ is
 - (1) π
- (2) 2π
- (3) 3π

- 49. If A+B=45°, then (1-cotA). (1-cotB) is
 - (1) 1
- (2) 0
- (3) 2

- 50. The value of $\sin 78^{\circ} + \cos 132^{\circ}$ is

- (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$

Set Code :	T2
Booklet Code :	В

PHYSICS

<u>5</u> 1.	The linear momentum of a particle varies w	ith time t as $p = a+bt+ct^2$ which	of the following is
	correct?		

- (1) Force varies with time in a quadratic manner.
- (2) Force is time-dependent.
- (3) The velocity of the particle is proportional to time.
- (4) The displacement of the particle is proportional to t. .

52. A shell of mass m moving with a velocity ν suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is

- (1) v
- (2) 2v
- (3) 3v/4

53. The velocity of a freely falling body after 2s is

- (1) 9.8 ms⁻¹
- (2) 10.2 ms⁻¹
- (3) 18.6 ms⁻¹
- (4) 19.6 ms⁻¹

54. A large number of bullets are fired in all directions with the same speed u. The maximum area on the ground on which these bullets will spread is

- (1) $\frac{\pi u^2}{g^2}$ (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ (4) $\frac{\pi u}{g^4}$

The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is µ, will be

- (1) $\frac{v^2}{2\mu g}$ (2) $\frac{v^2}{\mu g}$ (3) $\frac{v^2}{4\mu g}$ (4) $\frac{v}{2\mu g}$

56. When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts

- (1) In the backward direction on the front wheel and in the forward direction on the rear wheel
- (2) In the forward direction on the front wheel and in the backward direction on the rear wheel
- (3) In the backward direction on both the front and the rear wheels
- (4) In the forward direction on both the front and the rear wheels

Set Code :	T2
Booklet Code :	В

	71 15							Doomer	cout.	D
57.	In a	perfectly ine	lastic col	lision, the tw	o bodies		13	8		
	(1)	strike and e	xplode		(2)	explode wi	thout strik	cing		
	(3)	implode and	d explode		(4)	combine ar	nd move to	ogether		
58.		ler the action	of a cons	tant force, a	particle is	experiencin	g a consta	nt acceler	ation, th	en the
	-	er is			(2)					
	(1)	zero			(2)	positive	·c			2 17
	(3)	negative			(4)	increasing	uniformiy	with time	3	
59.	Con	sider the follo	owing tw	o statements						*
	A:			f a system of		is zero				
		Kinetic ene								
	Ther		igy of a s	system of par	ticles is Z	cio.				
			0. D :	U.s. A						
	(1)	A implies B	•		•			19		
	(2)			B does not					15	
	(3)			es not imply						
	(4)	A does not i	mply B b	ut B implies	A				7/6	
60.		engine develo			How much	time will it	take to li	ft a mass	of 200 k	g to a
	(1)	4s	(2)	5s	(3)	8s	(4)	10s		
61.	Ifas	spring has tim	ne period	T, and is cut	into n equ	al parts, ther	the time	period wi	ll be	
	(1)	$T\sqrt{n}$	(2)	$\frac{\mathrm{T}}{\sqrt{n}}$. (3)	nТ	(4)	Т .		
62.	Whe	en temperatur	e increas	es, the freque	ency of a t	uning fork	oe B			
	(1)	increases				J		*		
	(2)	decreases	50				55			
	(3)	remains sam	ne							
	(4)	increases or	decrease	s depending	on the ma	terials				
					11-B					

63.	Ifa	simple harm	nonic moti	on is r	epresen	ted by	$\frac{d^2x}{dy^2} + \alpha x = 0$, its time j	period is	S	
	(1)	$2\pi\sqrt{\alpha}$	(2)	2πα	, . , .	(3)	$\frac{2\pi}{\sqrt{\alpha}}$	(4)	$\frac{2\pi}{\alpha}$	3	
64.	A ci	inema hall ha	as volume	of 750 hall sh	00 m ³ . It	is requi	ired to have	reverbera	tion tim	e of 1.5	seconds.
	(1)	850 w-m ²	5.5			(2)	82.50 w-n	n²			(10)
	(3)	8.250 w-m	2			(4)					
65.	Toa	bsorb the so	und in a ha	ll whi	ch of the	follow	ing are used	1	*		
	(1)	Glasses, st				(2)	. 14750				
	(3)	Polished su				(4)					4,
66.		represents a	vagadro's	numbe	r, then t	he numb	per of molec	ules in 6 g	m of hy	drogen a	t NTP is
	(1)	2N	(2)	3N		(3)	N	(4)	N/6		
67.	The	mean transla	tional kin	etic en	ergy of	a perfec	t gas molec	ule at the t	empera	ture T K	is
	(1)	$\frac{1}{2}kT$. (2)	kT	j.	(3)	$\frac{3}{2}kT$	(4)	2kT		
68.	The	amount of he	at given to	a bod	v which	raises i	ts temperate	ure by 1°C	10.070		9 A
in	(1)	water equiv				(2)	thermal he				
	(3)	specific hea					temperatur				2 2
69.		ng an adiaba lute tempera					s is found to	be propo	rtional t	o the cub	e of its
	(1)	$\frac{3}{2}$	(2)	$\frac{4}{3}$		(3)	2	(4)	$\frac{5}{3}$		٠,
					75 91			- 10			
		1.83		v ^a		12-B	·				

Set Code :	T2
Booklet Code :	В

- 70. Cladding in the optical fiber is mainly used to
 - (1) to protect the fiber from mechanical stresses
 - (2) to protect the fiber from corrosion
 - (3) to protect the fiber from mechanical strength
 - (4) to protect the fiber from electromagnetic guidance
- 71. Two quantities A and B are related by the relation A/B = m where m is linear mass density and A is force. The dimensions of B will be
 - (1) same as that of latent heat
 - (2) same as that of pressure
 - (3) same as that of work
 - (4) same as that of momentum
- 72. The dimensional formula of capacitance in terms of M, L, T and I is
 - $(1) \quad [ML^2T^2I^2]$
- (2) [ML-2T4]
- (3) $[M^{-1}L^3T^3I]$
- (4) $[M^{-1}L^{-2}T^4I^2]$
- 73. If l, m and n are the direction cosines of a vector, then

 - (1) l+m+n=1 (2) $l^2+m^2+n^2=1$ (3) $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}=1$

- The angle between i+j and j+k is
 - (1) 0°
- (2) 90°
- (3) 45°
- (4) 60°
- 75. A particle is moving eastwards with a velocity of 5 ms-1. In 10 seconds the velocity changes to 5 ms-1 northwards. The average acceleration in this time is
 - (1) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-west
- (2) zero
- (3) $\frac{1}{2}$ ms⁻² towards north
- (4) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-east

Set Code :	T2
Set Code : Booklet Code	В

CHEMISTRY

76.	Potassium metal and potassium ions												
	(1)	both react with	h water		(2)	have the same number of protons							
	(3)	both react wit	h chlor	ine gas	(4)	have the same	electro	onic configu	ration				
77.	stan	dard flask. 10 m	lofthis	ide were dissolve solution were pip on. The concentr	etted	out into another	flask a	nd made up v solution nov	with distilled				
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M					
78.	Con	centration of a	1.0 M s	solution of phosp	horic	acid in water i	S						
	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N					
79.	Whi	ich of the follov	ving is	a Lewis acid?					5 20				
	(1)	Ammonia	1000		(2)	Berylium chl	oride						
	(3)	Boron trifluor	ride	2	(4)	Magnesium o	xide						
80.	Which of the following constitutes the components of a buffer solution?												
оо.	(1) Potassium chloride and potassium hydroxide												
	(2)	Sodium aceta											
	(3)	Magnesium su	lphate	and sulphuric ac				*5					
	(4)	Calcium chlor	ride and	d calcium acetate	•	8							
81.	Whi	ich of the follov	ving is	an electrolyte?									
	(1)	Acetic acid	(2)	Glucose	(3)	Urea	(4)	Pyridine					
82.		culate the Stand $Cu/Cu^{+2} = (-) 0.5$		of the cell, Co	1/Cd+2	//Cu ⁺² /Cu give	n that E	E ⁰ Cd/Cd ⁺² =	= 0.44V and				
	(1)	(-) 1.0 V	(2)	1.0 V	(3)	(-) 0.78 V	(4)	0.78 V					
83.	Asc	olution of nicke	l chlori	de was electroly	sed u	sing Platinum e	electrod	les. After ele	ectrolysis,				
	(1)			ted on the anode									
	(3)			ed at the anode		nickel will be	deposi	ted on the ca	athode				
			*		14-B								

								Set C	ode: T2
								Booklet C	ode : B
84.	Whi	ch of the fo	ollowing me	tals will u	ndergo oxid	ation fastest	t?	25	
	(1)	Cu	(2)	Li	(3)	Zinc	(4)	Iron	
85	Whi	ch of the fo	ollowing car	nnot be us	ed for the ste	erilization of	fdrinking	water?	•

85. Which of the following cannot be used for the sterilization of drinking water?

Ozone
Calcium Oxychloride
Potassium Chloride
Chlorine water

86. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness in terms of calcium carbonate equivalent is

1.0 ppm
1.0 ppm
1.20 ppm
0.60 ppm
2.40 ppm

87. Soda used in the L-S process for softening of water is, Chemically.

sodium bicarbonate
sodium carbonate decahydrate
sodium hydroxide (40%)

(3) sodium carbonate
(4) sodium hydroxide (40%)
88. The process of cementation with zinc powder is known as
(1) sherardizing
(2) zincing
(3) metal cladding
(4) electroplating

89. Carrosion of a metal is fastest in(1) rain-water (2) acidulated water (3) distilled water (4) de-ionised water

90. Which of the following is a thermoset polymer?

(1) Polystyrene (2) PVC (3) Polythene (4) Urea-formaldehyde resin

91. Chemically, neoprene is

polyvinyl benzene
 polychloroprene
 polychloroprene
 polychloroprene

92. Vulcanization involves heating of raw rubber with

selenium element
 elemental sulphur
 a mixture of Se and elemental sulphur
 a mixture of selenium and sulphur dioxide

Set Code :	T2
Booklet Code :	В

93.	Petr	ol largely conta	ins					120	
	(1)	a mixture of un	isatura	ted hydrocarbo	ns C ₅ -	C ₈			
	(2)	a mixture of be	enzene	, toluene and xy	lene				
	(3)	a mixture of sa	turate	d hydrocarbons	C12 - C	14.			
	(4)	a mixture of sa	turate	d hydrocarbons	C ₆ - C ₈	6			
94.	Whi	ich of the follow	ing ga	ses is largely res	sponsil	ole for acid-rain	?		
	(1)	SO ₂ & NO ₂			(2)	CO ₂ & water va	pour	g - 27	
	(3)	CO ₂ &N ₂			(4)	N ₂ & CO ₂			
0.5	DOI	~ c		8				180	
95.		O stands for			(0)	Diametria Orm	D	amand	
	(1)	Biogenetic Ox				Biometric Oxy			
	(3)	Biological Oxy	gen D	emand .	(4)	Biospecific Ox	ygen	Jemand	
									47
96.	The	valency electro	nic cor	nfiguration of Pl	hospho	rous atom (At.N	10. 15	118	
	(1)	$3s^2 3p^3$	(2)	3s ¹ 3p ³ 3d ¹	(3)	$3s^23p^23d^1.$	(4)	3s' 3p ² 3d ²	34
97.	Ane	element 'A' of A	.No.12	combines with	an eler	nent 'B' of At.No	0.17.7	he compound	formed is
		covalent AB			(3)	covalent AB ₂	(4)	ionic AB	
,	,								
98.	The	number of neut	rons p	resent in the ator	m of 56	Ba ¹³⁷ is			
		56		137	(3)	193	(4)	81	
	315310							. *	
99.	Hyd	lrogen bonding	in wate	r molecule is re	sponsi	ble for			
	(1)	decrease in its	freezi	ng point	(2)				
	(3)	increase in its	boiling	g point	(4)	decrease in its	boilin	g point	
100	In th	ne HCl molecule	the b	onding between	hydro	gen and chlorine	is	÷	
100.		purely covaler			(3)	polar covalent	(4)	complex coo	rdinate
								¥2	

ELECTRICAL AND ELECTRONICS ENGINEERING

101	In a airean	halarr	aimanit.	at =======	T :-	1	+-
101.	in a given	Delow	circuit,	at resonance	In IS	equa	to

- (1) 0A
- (2) 10A
- (3) 5A
- (4) 0.5 A

102. An alternating current has a peak value of 2A. If its Peak Factor is $\sqrt{2}$ and its form factor is

 $\frac{\pi}{2\sqrt{2}}$, then its average value is

- (1) $\frac{8}{\pi}A$ (2) $\frac{4}{\pi}A$ (3) $\frac{\pi}{2}A$ (4) $\frac{\pi}{4}A$

103. The power factor of an incandescent bulb is

- (1) 0.8 lagging
- (2) 0.8 leading
- (3) unity

104. The power factor of a circuit comprising resistance R and reactance X in series is

- (1) $\frac{R}{\sqrt{R^2 + X^2}}$ (2) $\frac{X}{\sqrt{R^2 + X^2}}$ (3) $\frac{R}{R^2 + X^2}$ (4) $\frac{X}{R^2 + X^2}$

105. The working principle of a Transformer is

(1) Electromagnetism

(2) Conduction

(3) Energy transfer

(4) Mutual induction

106. The equivalent resistance of a transformer having transformation ratio (K) = 5 and R1 = 0.1 Ω when referred to secondary is

- (1) 150Ω
- (2) 0.02Ω
- (3) 0.004Ω
- (4) 2.5 Ω

107. What is load at which maximum efficiency occurs in case of a 100 kVA transformer with iron loss of 1 kW and full load copper loss of 2 kW

- (1) 100 kVA
- (2) 70.7 kVA
- (3) 50.5 kVA
- (4) 25.2 kVA

17-B

									0.00 (0.000)	. [
							16		Set Co	
		gr.							Booklet Co	de : B
108.	In h	igh frequency tra	nsfor	mers, the m	aterial u	sec	for core is			
		Ferrite	(2)	Iron		(3)		(4)	Silica	
								•		
109.	Buc	hholz relay is use	ed to							8 5
	(1)	identify faults								
	(2)	rectify the fault					(*)			
	(3)	trip-off connec	tions	when fault e	exists					
	(4)	clears the fault							1.71	
110	D'a	ribution transfor		one decion	d to ke	on	core losses mir	imun	and conner	losses are
110.		ively less import			d to ke	СÞ	core losses iiii	minan	and copper	100000 410
	(1)	The primary of s			are energ	ize	d for all the 24 h	ours in	a day and con	e loss occur
	(1)	throughout the	lay wh	nile copper le	oss occur	or	ly when the seco	ndary	is supplying t	he load
	(2)	To ensure maxi					· w			
10		Greater core lo		-	77	tio	n			-
	(4)						ne transformer r	apidly		
	100						#			
111.	Whi	ch one of the fo	llowi	ng methods	gives m	ore	e accurate result	t for d	etermination	of voltage
	regu	lation of an alter	nator					•		
	(1)	MMF method			(2	2)	Synchronous in	mpeda	nce method	
	(3)	Potier triangle	metho	od	(4	(1	ASA method			
		*		0			* =		64	
112.	Hyd	rogen is used in			nainly to)	versus estado tracego.			
	(1)	reduce distortion				2)	cool the machi		1	
	(3)	strengthen the	magne	etic field	(4	1)	reduce eddy cu	ırrent	losses	
	TI	C	c		0 malan	1+0	mator running a	+ 900	rnm is	
113.		frequency of em							60 Hz	
	(1)	50 Hz	(2)	120 Hz	(2))	90 Hz	(4)	00112	
114	The	angle between sy	vnchr	onouely rote	ting stat	or	flux and rotor p	oles of	a synchrono	us motor is
114.		ed angle		onousiy rota	iting stat	.OI	nua una rotor p	0.00		
		Synchronizing		Slip	(3	3)	Power factor	(4)	Torque	
	(1)	Sylicinomenig	(~)	July		,		• *	•	
					18-B		25	1.0		(EEE)

Set Code :	T2
Booklet Code :	В

115.		e be the electric chronous motor						he number of p	oles of a
		$\theta_e = P \times \theta_m$				$\theta = (P/2) \times \theta$			
		$\theta_{\rm e}^{\rm e} = \theta_{\rm m}/{\rm P}^{\rm m}$				$\theta_e = P/\theta_m$			×
116.		essential condi	tion for	parallel opera	tion of t	wo single phase	transfo	ormers is that the	ey should
	(1)	Polarity	(2)	KVA rating	(3)	Voltage ratio	(4)	Percentage in	npedance
117.	The	V-curve of a sy	nchron	ous motor is a	plot of				
	(1)	State current	versus s	stator power fa	actor		10		
-	(2)	Stator current	t versus	rotor current	at all loa	ads			
	(3)	Stator current	versus	rotor currents	when p	ower delivered	is cons	tant	
	(4)	Stator current	versus	power deliver	ed				
118.	A w	ound rotor ind	uction r	notor runs wi	th a slip	of 0.03 when	develop	oing full load to	orque. Its
118.	roto	or resistance is 0 oss the slip ring:	.25 ohm s, what	per phase. If is the slip for	an exter	nal resistance 0 torque?	.50 ohr	n per phase is c	•
118.	roto	r resistance is 0	.25 ohm s, what	per phase. If	an exter	nal resistance 0	.50 ohr	•	•
	roto acro (1)	or resistance is 0 oss the slip ring:	2.25 ohm s, what i	n per phase. If is the slip for 0.06	an exter full load (3)	nal resistance 0 torque? 0.09	.50 ohr (4)	n per phase is c	•
	roto acro (1)	or resistance is 0 oss the slip ring 0.03 torque develop	.25 ohm s, what (2)	n per phase. If is the slip for 0.06 three phase in	an exter full load (3)	nal resistance 0 torque? 0.09 motor depends	(4) on	n per phase is co	•
	roto acro (1) The (1)	or resistance is 0 oss the slip ring 0.03 torque develop	(2) ed in a t	n per phase. If is the slip for 0.06 three phase incurrent	an exter full load (3) duction	nal resistance 0 torque? 0.09 motor depends	(4) on d stator	0.1	•
119.	roto acro (1) The (1) (3)	or resistance is 0 loss the slip ring 0.03 torque develop Stator flux an	(2) ed in a tod rotor of	n per phase. If is the slip for 0.06 three phase incurrent or flux	an exter full load (3) duction (2) (4)	nal resistance 0 torque? 0.09 motor depends stator flux and rotor current	(4) on d stator	0.1	•
119.	roto acro (1) The (1) (3)	or resistance is 0 oss the slip ring 0.03 torque develop Stator flux an stator current	(2) ed in a tod rotor of	n per phase. If is the slip for 0.06 three phase incurrent or flux	an exter full load (3) duction (2) (4) self star	nal resistance 0 torque? 0.09 motor depends stator flux and rotor current	(4) on d stator and rote	0.1 current	•
119.	roto acro (1) The (1) (3)	or resistance is 0 oss the slip ring 0.03 torque develop Stator flux an stator current ngle phase ac in	(2) ed in a tod rotor of	n per phase. If is the slip for 0.06 three phase incurrent or flux	an exter full load (3) duction (2) (4) self star	nal resistance 0 torque? 0.09 motor depends stator flux and rotor current ting because it rotor is short	(4) on d stator and rote has circuit	0.1 current or flux	•
119.	roto acro (1) The (1) (3) A si (1) (3)	or resistance is 0 oss the slip ring 0.03 torque develop Stator flux an stator current ngle phase ac in No slip high intertia	(2) ed in a tod rotor of and rotor	n per phase. If is the slip for 0.06 three phase incourrent or flux	an exter full load (3) duction: (2) (4) self star (2) (4)	nal resistance 0 torque? 0.09 motor depends stator flux and rotor current ting because it rotor is short absence of ro	(4) on d stator and rote has circuit	0.1 current or flux	•
119.	roto acro (1) The (1) (3) A sii (1) (3) A sii	or resistance is 0 oss the slip ring 0.03 torque develop Stator flux an stator current ngle phase ac in	(2) sed in a tod rotor of and rotor of another and rotor of another and rotor of another	n per phase. If is the slip for 0.06 three phase incurrent or flux n motor is not	an exter full load (3) duction (2) (4) self star (2) (4)	nal resistance 0 torque? 0.09 motor depends stator flux and rotor current ting because it rotor is short absence of ro	(4) on d stator and rote has circuit tating n	0.1 current or flux ed nagnetic field	•

19-B

Set Code :	
Booklet Code :	В

122.	Und	er no-load cond	itions	, power factor of	an in	duction motor is	about		
	(1)	0.2 lag	(2)	0.9 lag	(3)	Unity	(4)	0.5 lead	
123.	Ofa	ll the plants, min	imum	quantity of fuel	used i	s required in	plan	t.	
	(1)	Diesel power	(2)	Steam	(3)	Hydro-electric	(4)	Nuclear	
124.	The	overall efficience	y (η)	of a Thermal Po	wer St	ation is			
	(1)	η_{boiler}	(2)	$\eta_{\text{boiler}}\!\times\!\eta_{\text{generator}}$	(3)	$\eta_{\text{generator}} \times \eta_{\text{turbine}}$	(4)	$\eta_{\text{turbine}} \times \eta_{\text{boiler}}$	
125.	The	effect of water h	amme	r can be minimiz	zed by	using .		ti.	
	(1)	Spill way	(2)	Anvil .	(3)	Surge Tank	(4)	Draft tube	- 15
126.	In a	diesel power pla	nt susj	pended impuritie	s in th	ne fuel are remove	ed by		
	(1)	Cyclone separa	itors		(2)	Electrostatic se	parate	ors	
	(3)	Fabric filters	95	9	(4)	Strainer			×
127.	The	rupturing capaci	ity of a	circuit breaker	is mea	sured in			
	(1)	Ampere	(2)	Volt-Ampere	(3)	Watt	(4)	Volt	
128.	A ci	rcuit breaker is e	ssenti	ally					
	(1)	An arc extingui	sher						
	(2)	A current interr	upting	device					
	(3)	A power factor	corre	cting device					
	(4)	A device for ne	utralia	zing the effect of	trans	ients			
129.	Mho	relay normally	is used	d for protection	of				
	(1)	Long transmiss	ion lir	nes					
	(2)	Medium Transr	nissio	n lines					
	(3)	Short transmiss	sion li	nes					
	(4)	No length crite	rion						
								100	

B (EEE)

							Set Cod	e: T2
							Booklet Cod	e : B
130. Th	e scheme adop	ted for bus	-bar protectio	on is				
(1)	-		•	(2)	differential	protecti	ion	
(3)				(4)				
3 1	NA CONTRACTOR			(.)	reverse per	or prote	·	
131. Du	e to the ferrari	effect on	ong overhead	lines				
(1)			s less than sen					
(2)	receiving en	d voltage i	s more than se	ending	voltage			
(3)	receiving en	d voltage i	s equal to send	ding vo	oltage			
(4)	receiving en	d voltage i	s not effected					
	E							
132. Co	rona occurs bet	ween two	transmission	lines w	hen they are		-	
(1)				(2)	widely space	ed	4	W 62
(3)	having high p	ootential di	fference	(4)	carrying DC	power		
133. Sur	ge impedence o	of a transm	ission line is	given l	by		6.9	
(1)	$\sqrt{(L/C)}$	(2)	$\sqrt{(C/L)}$	(3)	\sqrt{LC}	(4)	$1\sqrt{LC}$	e:
NAME OF			*					
	general distan		rt transmissio	n line	is			
(1)	less than 80 k		1.20	(2)	80 km-250 l	cm		
(3)	more than 25	0 km		(4)	150 km-300	km		
135. The	resistance of th	ne line			11.0			
(1)	increases with	n increase	in frequency	(2)	decreases wi	th increa	ase in frequency	,
(3)	is independen	t of freque	ency	(4)			ase in frequency	
				*	59.5		35	
	VDC Transmis	sion Syste	m AC is conv	erted to	DC using			
(1)	Rectifier	(2) In	verter	(3)	Chopper	(4)	Cycloconverte	er
137 Suer	ension type ins	ulatoro or	a used for walt	ages L	ovend		20 20	
with the control of the	220 V	(2) 40			eyond 11 KV	(4)	33 KV	22
	ELEVI V	1/1 41	V		1 1 B M	1/11		

				**				Dookiet	Louc .	D
138.	Pow	er Factor of Ind	ustrial	loads is gener	ally					
	(1)	Unity	(2)	Leading	(3)	Lagging	(4)	Zero		
139.	Pole	mounted transf	former	stations are m	neant for					
	(1)	Primary transr	nission	1	(2)	Primary distr	ribution			
	(3)	Secondary tran			(4)	Secondary di	stributio	on .		
140.	Tran	smission lines a	are tran	sposed to		54				
	(1)	Reduce coppe	r loss							
	(2)	Reduce skin e								
	(3)	Prevent interfe		with commun	ication l	ines			8 0	
	(4)	Present short of								
	(+)	1 resent short	licuit	between cond	uotois					
141	The	units for specif	ic ener	ov consumnti	on relate	d to traction is	ę			
141.	THE	uints for specif	ic chei	gy consumption	on relate	d to traction i				
	(1)	Watt - Hour Tonne - km	(2)	Watt - Hour km	(3)	Joules/Sec	(4)	Watt		
142	In K	ando system o	f track	electrification	, .	is conver	ted into			
172.		single phase, d		Ciccumication	(2)			-	_	
	-			1000		three phase,		nace		
	(3)	single phase, ti	iree pii	iase	(4)	tilice pliase,	single pi	iasc		
143.		in has a schedul					ch are 6	km apart.	The actu	al run
	(1)	60 sec	(2)	360 sec	(3)	240 sec	(4)	300 sec		
144.	Ave	rage speed of a t	rain is	dependent on		9				
	(1)	Distance between	en two	stops & run tir	me	7		51		
	(2)	Run time & ste	op time	•						
	(3)	Stop time & ac				(f) (1)				
	(4)	Acceleration &								
	, ,				22-B					(EEE)

Set Code : T2

Booklet Code : B

145.	The	electric motor used for traction work	shoul	d have	
		Low starting torque	(2)		
		Rise in speed with increase in load		No braking capability	
146	Trac	ctive effort of an electric locomotive ca	n he	incressed by	
		Increasing the supply voltage	iii oc	increased by	
		Increasing the speed			
		Increasing the dead weight over the dr	ivina	avles	
	(4)		iving	anes	
	(.)			*	
147.	Trac	tive effort required for a train going do	wn fr	om an ungradiant is	
	(1)	less than tractive effort on level track		-	
	(2)	more than tractive effort on level trac			
		equal to the tractive effort on level tra	200	× *	
((4)	independent of mass of the train			
		ic ex		· · · · · · · · · · · · · · · · · · ·	
148.	The a	area under speed-time curve of a train	epres	sents	
((1)	average speed	(2)	average acceleration	
((3)	distance travelled	(4)	average velocity	
149. /	As th	ne number of wire guage increases the	cross	sectional area of wire	
	(1)	increases	(2)	remains same	
((3)	becomes neglible	(4)	1990 - 1790 - 1790 - 1700 - 17	
		ch of the following wiring is not visible	outsi	ide?	
7		conduit wiring	(2)	· ·	29
((3)	casing and capping wiring	(4)	concealed wiring	
151. F	Resis	stance of earth system of power station	s sho	uld not exceed the limit of	
		0.5 ohms (2) 2 ohms	(3)		
				13-	

23-B

								Set (Code: T2
								Booklet (Code : B
152.	In el	ectrical installat	ions t	he fuse is alv	ways con	nected in		wire.	
	(1)	earth	(2)	neutral	(3)	phase	(4)	ground	
153.	The	transistor used in	n amp	lifier circuits	s operate	s in			
	(1)	Active region			(2)	Saturation re	gion		
	(3)	Cut off region			(4)	Reverse regi	on		
154.	The	gain of an ampli	fier is	given by the	followin	g formula			
		$G(dB) = 10 \log$))	(2)	G(dB) = 101	og (p,,,)		
		$G(dB) = 10 \log$		p _{in})	(4)	G(dB) = 101	og (p _{in})		
	4.			10.0	525	100			
155.	The	number of diode							itier are
	(1)	1,2	(2)	1,4	(3)	2,4	(4)	2,1	
156.	The	average voltage o z is	f a ful	l wave rectific	er fed fro	m an ac source o	of peak v	oltage, V _m a	and frequency
	(1)	V_m/π	(2)	$2V_m/\pi$	(3)	$V_m/\sqrt{2}$	(4)	$V_m/2$	
		2						83	
157.	In a	transistor which							21
	(1)	Emitter	(2)	Collector	. (3)	Drain	(4)	Base	
158.	Zene	er diode regulate	s				52		
	(1)	Voltage	(2)	Current	(3)	Resistance	(4)	Power	
159	The	frequency of osc	illatio	on of wein br	ridge osc	illator in Hz is			
		1/2 π RC		2πRC		1/RC	(4)	R/C	5

24-B (EEE)

(3) Z (4) 0

160. $XYZ + (\overline{X} + \overline{YZ})XYZ + \overline{XYZ}$

 $(1) \quad X\dot{Y}Z \qquad \qquad (2) \quad X$

Set Code :	
Booklet Code :	В

161.	The	2's complemen	t of th	e number 1001	1100 i	s		19
	(1)	0110 0011	(2)	0110 0100	(3)	1001 1100	(4)	1001 1101
162.	The	bolean expressi	ion for	NOR gate with	inputs	A and B is		
	(1)	A+B	(2)	A.B	(3)	A+B	(4)	$\overline{A+B}$
163.	ΑD	AC with 8 input	t bits h	asre	soluti	on compared wit	h DA	C with 4 input bits.
	(1)	High	(2)	Same	(3)	Low	(4)	Infinite
164.	The	power electron	ic devi	ice, Silicon Cont	rolled	Rectifier has		
	(1) Two junctions and three layers					Three junction	s and	three layers
	(3)	Three junction	ns and	four layers	(4)	Two junctions	and tw	vo layers
165.	Whi	ch one of the fo	llowin	g is a bidirection	nal Co	ntrolled switch		
	(1)	Thyristor	(2)	Triac	(3)	GTO	(4)	Diac
166.	If the	e gate current of	f an SC	CR is increased, i	ts forv	ward break over	voltag	e V _{BO} will
	(1)	Increase	(2)	Decrease	(3)	Not be affected	d (4)	Be infinity
167.	Ìn ar	uJT triggering	circu	it for SCR, pulse	s are g	generated at		of UJT.
	(1)	Emitter (E)	(2)	Base 1 (B1)	(3)	Base 2(B2)	(4)	B1-B2
168.	In a	half wave contr	olled r	ectifier feeding	R-L lo	ad, the range of	firing	angle of thyristor is
						$0 \le \alpha \le 90^{\circ}$		
	give	n by						, V_{in} and duty cycle, δ is
	(1)	$V_{_{o}}\!\!=\!\!V_{_{in}}\!\!\times\!\delta$	(2)	$V_o = V_{in}/\delta$	(3)	$V_o = V_{in}/(1-\delta)$	(4)	$V_o = V_{in}$

Set Code:	T2
Booklet Code :	В

170	. An	AC regulator p	rovides					12	
	(1)	Variable freq	uency, f	ixed ma	gnitudeA	C			
	(2)	Fixed freque	ncy, var	iable ma	gnitude A	C			
	(3)	Fixed freque	ncy, fixe	ed magni	itude AC				
	(4)	Variable freq	uency, v	ariable r	magnitud	eAC			
171	. The	output voltage	e of a sir	ngle phas	se bridge	inver	ter is		0. 121
	(1)	Square wave				(2)		al wave	
	(3)	Constant de				(4)	Triangula	ar wave	
170	т.						1101.1		
1/2.		quadrant oper			or can be				
	(1)	Uncontrolled		tor	100			trolled convertor	
	(3)	Half wave co	nvertor			(4)	Fully cor	ntrolled convertor	
173.	For	controlling the	speed	of a 3 ph	ase induc	ction	motor V/f	ratio is maintained co	nstant for
	(1)	Constant air g	7.7	-		(2)		reactance	
	(3)	Varying the a	ir gap fl	ux		(4)	Variable	resistance	
174.	8051	microcontrol	ler has		data lin	es an	ď	address lines.	
		16, 8		8, 8			8, 16	(4) 16, 20	,
175.	Whi	ch of the follo	wing in	struction	is not a	lata ti	ansfer ins	truction?	
		XCH		PUSH			ADD	(4) MOV	
176	Inter	nal memory o	£ 8051	mioro oc	ntroller .	oonsi	ata of		
170.	(1)	128 bytes of R				COHSI	SIS OI		
		•							
	(2)	4 K bytes of I						2 0	
	(3)	2 K bytes of R						A R	
	(4)	128 bytes of I	RAM, 4	K bytes	of ROM				19

26-B

Set Code :	T2
Booklet Code :	В

177.	The	highest	priority	inter	rupt is							
	(1)	TF1		(2)	IE1		(3)	TF0	(4) IE0		
178.	Perc	centage V	/oltage	regula	ation of a	transı	mission	line is giv	en by	*		
	(1)	(E_s-E_r)	/E,*100	0 -			(2)	$(E_r - E_s)/I$	E,*100			9 8
	(3)	(E_s-E_r)	/E _s *100	0			(4)	$(E_r - E_s)/I$	E _s *100			
179.	In a	main lin	e servi	ce of	electric tr	action	ı system					
0	(1)	Distance	e betw	een tv	vo stops is	s very	small					
	(2)	Accele	ration a	nd ret	ardation	period	ls are sm	nall				
	(3)	Free ru	nning a	nd co	asting per	iods a	re short					
	(4)	Accele	ration a	nd ret	ardation	period	ls are lor	ng				8
180.	For	SCR, dv	dt prot	ection	is achiev	ed by	connect	ting			S *	
	(1)	L in ser	ies with	SCR			(2)	RL in ser	ies with S	CR		
	(3)	RC in s	eries w	ith SC	R		(4)	RC in par	rallel with	SCR	¥	
181.	The	effective	resista	nce be	etween te	rmina	ls A and	B in the b	elow figur	e is		*
	(1)	r							Ü			
	(2)	2r		- 1	1	^	٦	В				
	(3)	3r			vy	LAÅ	~~ <u>~</u>	_				
	(4)	4r					i					
82.	If I b unit o		rent, C	be the	capacitar	ice an	d V be tl	ne potentia	al difference	es, the I/o	CV will ha	ive the
	(1)	Time		(2)	Power		(3)	Frequenc	y (4)	Reacti	ive Power	
83.	In a s	series R-	C circu	it exci	ited by a I	OC vo	ltage E,	the initial	current is			
	4400	E						E		C		
	(1)	R		(2)	0	*	(3)	C	(4)	$\overline{\mathbf{E}}$		
						1	27-B		0			(EEE)

Set Code:	T2
Booklet Code:	В

184	The strength of electromagnet	can	be	increased	b	v
104.	The strength of electromagnet	Can	-	moreasea	•	,

- (1) Decreasing the length of the conductor (2) Increasing the length of the conductor
- (3) Increasing the number of turns
- (4) Decreasing the number of turns

185. Tesla is a unit of

- (1) Flux
- (2) Field strength (3) Current
- (4) Flux density

186. According to joule's law heat produced by an electric current is proportional to

- (1) square of the resistance
- (2) square of the current

(3) potential difference

square of the time

187. The Thevenin's equivalent resistance R_{th} for given below network is

- (1) Γ_{Ω}
- $(2) \cdot 2 \Omega$
- (3) 4Ω
- (4) Infinity

188. In a differential compound generator, the series field turns are provided on

- (1) Armature
- (2) Commutator
- (3) Interpole
- (4) Main pole

189. The function of the commutator in a dc machine is

- (1) to change alternating current to direct current
- (2) to improve commutation
- (3) for easy speed control
- (4) to change alternating voltage to direct voltage

190. If N is the speed and P is number of poles, then the frequency of induced e.m. f in DC generator will be

Set Code :	T2
Booklet Code :	В

191.	The	demagnetizing !	flux in	dc generator					
	(1)	Increases e.m.	f		(2)	Decreases e.	.m.f		
	(3)	Increases spee	d .		(4)	Decreases sp	peed		
192.	If T	be the torque a	nd I _a th	ne armature curre	ent for	a dc series mo	otor, ther	which of the	following
	(1)	$T_{a}\alpha I_{a}$	(2)	$T_a \alpha (1/I_a)$	(3)	$T_a \alpha (I_a^2)$	(4)	$T_a \alpha (1/I_a)^2$	¥3
193.	Wha	at will happen if	the ba	ck e.m.f of a DC	motor	vanishes sude	denly		
	(1)	The motor will	stop		(2)	The motor w	ill conti	nue to run	
	(3)	The armature n	nay bu	ım	(4)	The motor w	ill run n	oisy	
194.	The	mechanical pov	er de	veloped by a DC	motor	is equal to			
	(1)	Power input +	losses	s	(2)	Back e.m.f ×	armatu	re current	
	(3)	Power output	× loss	es	(4)	Power output	it × effic	eiency	
195.		lecting saturation		current taken by	a seri	ies motor is in	ncreased	from 10A to	12A, the
	-	20%		44%	(3)	30.5%	(4)	16.6%	
						,			
196.	Dyn	amometer type i	nstrun	nent have					
	(1)	Cramped scale	at the	beginning	(2)	Cramped at t	he end		
	(3)	Cramped at the	midd	le	(4)	Uniform sca	le		
						0 00 000			
197.	To n	neasure a signal	of 10	mV at 75 Hz, wh	ich on		ving inst	rument can be	e used
	(1)	cathode ray os	cillos	cope	(2)	VIVM			
	(3)	Moving Iron ve	oltmet	er	(4)	digital multi	meter		89
198.	Whi	ch one of the fol	lowin	g a passive trans	ducer				
	(1)	piezolectric	(2)	thermocouple	(3)	photovoltaic	cell	(4) LVD	ι

Set Code : T2

Booklet Code : B

- 199. The voltage coil of a single phase house energy meter
 - (1) is highly resistive
 - (2) is highly inductive
 - (3) is highly capacitive
 - (4) has a phase angle equal to load power factor angle
- 200. The effective value of a triangular wave is
 - (1) Max. value

(2) $\sqrt{3}$ (Max. value)

(3) $\frac{\sqrt{3}}{\text{Max. value}}$

 $(4) \quad \frac{\text{Max. value}}{\sqrt{3}}$