(EIE) ÉLECTRONICS AND INSTRUMENTATION ENGINEERING INSTRUCTIONS TO CANDIDATES

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on
 the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING,
 THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE
 HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE
 SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- 2. Immediately on opening this Question Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- Use of Calculators, Mathematical Tables and Log books is not permitted.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate:
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

MATHEMATICS

1. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$

(1)
$$\sqrt{\frac{y}{x}}$$

(2)
$$\sqrt{\frac{x}{a}}$$

(3)
$$\sqrt{\frac{a}{x}}$$

(1)
$$\sqrt{\frac{y}{x}}$$
 (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$ (4) $\sqrt{\frac{x}{y}}$

The derivative of e^x with respect to \sqrt{x} is

$$(1) \quad \frac{2\sqrt{x}}{e^x}$$

(1)
$$\frac{2\sqrt{x}}{e^x}$$
 (2) $2\sqrt{x}e^x$ (3) $\frac{e^x}{2\sqrt{x}}$ (4) $\sqrt{x}.e^x$

$$(3) \quad \frac{e^x}{2\sqrt{x}}$$

(4)
$$\sqrt{x}.e^{x}$$

The equation of the normal to the curve $y = 5x^4$ at the point (1, 5) is

(1)
$$x + 20y = 99$$

(1)
$$x + 20y = 99$$
 (2) $x + 20y = 101$ (3) $x - 20y = 99$ (4) $x - 20y = 101$

(3)
$$x - 20y = 99$$

(4)
$$x - 20y = 10$$

The angle between the curves $y^2 = 4x$ and $x^2 + y^2 = 5$ is

$$(1) \quad \frac{\pi}{4}$$

(2)
$$tan^{-1}(2)$$
 (3) $tan^{-1}(3)$ (4) $tan^{-1}(4)$

5. If $u = x^3 y^3$ then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$

(1)
$$6(x^3+y^3)$$
 (2) $6x^3y^3$ (3) $6x^3$

(2)
$$6 x^3 y^3$$

(3)
$$6x^3$$

$$(4) 6y^3$$

 $\left[\operatorname{cosec} x \, dx = \right]$

(1)
$$\log(\csc x + \cot x) + C$$

(2)
$$\log(\cot x/2) + C$$

(3)
$$\log (\tan x/2) + C$$

(4)
$$-\csc x.\cot x + C$$

Set Code: T2 Booklet Code :

7.
$$\int_0^{\pi} \cos^{11} x \, dx =$$

- (1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$ (4) $\frac{128}{693}$

8.
$$\int f^{1}(x) \cdot [f(x)]^{n} dx =$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2)
$$\frac{[f(x)]^{n+1}}{n+1} + C$$
 (3)
$$n[f(x)]^{n-1} + C$$
 (4)
$$(n+1)[f(x)]^{n+1} + C$$

(3)
$$n[f(x)]^{n-1} + C$$

$$(n+1)[f(x)]^{n+1}+C$$

$$9. \qquad \int \frac{dx}{(x+7)\sqrt{x+6}} =$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

(2)
$$2Tan^{-1}(\sqrt{x+6})+C$$

(3)
$$Tan^{-1}(x+7)+C$$

(4)
$$2Tan^{-1}(x+7)+C$$

$$10. \quad \int \tan^{-1} x \, dx =$$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$

(2)
$$\frac{1}{1+x^2}+C$$

(3)
$$x^2.Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1+x^2} + C$$

$$11. \quad \int \frac{dx}{1 + e^{-x}} =$$

(1)
$$\log (1+e^{-x}) + C$$

(3) $e^{-x} + C$

(2)
$$\log(1+e^x) + C$$

(3)
$$e^{-x} + C$$

(4)
$$e^{x} + C$$

12.
$$\int_{-\pi}^{\frac{\pi}{2}} \sin|x| \, dx =$$

(1) 0 (2) 1

(3) 2

(4) -1

- 13. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- 14. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (3) 3
- (4) 2

- 15. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^2 = a \frac{d^2 y}{dx^2}$ is
 - (1) 4
- (2) 2
- (3) 1
- (4) 3
- 16. The family of straight lines passing through the origin is represented by the differential equation
- (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0
- 17. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + by + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear (4) Legender
- 18. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $y e^{-x^2} = x + c$ (2) $y e^x = x + c$ (3) $y e^{x^2} = x + c$ (4) y = x + c

- 19. The complementary function of $(D^3+D^2+D+1)y = 10$ is
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$ (2) $C_1 \cos x + C_2 \sin x + C_3 e^{x}$ (3) $C_1 + C_2 \cos x + C_3 \sin x$ (4) $(C_1 + C_2 x + C_3 x^2) e^{x}$
- - (3) $C_1 + C_2 \cos x + C_3 \sin x$
- 20. Particular Integral of $(D-1)^4y = e^x$ is

 - (1) $x^4 e^x$ (2) $\frac{x^4}{24} e^{-x}$ (3) $\frac{x^4}{12} e^x$ (4) $\frac{x^4}{24} e^x$

21. If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $A^4 =$

- (1) 3I
- (2) 91
- (3) 271
- (4) 811
- 22. If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x is
 - (1) 1
- (2) 2
- (3) 3
- (4) 4
- 23. What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3
 - (1) 64
- (2) 268
- (3) 512

24. If
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then $|A| = 1$

- (1) 1
- (2) 2
- (3) 3
- 25. The solution of a system of linear equations 2x y + 3z = 9, x + y + z = 6, x y + z = 2 is
 - (1) x = -1, y = -2, z = -3

(3) x = 2, y = 1, z = 3

- 26. If $\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x ai}$ then A = _____, B = ____.
 - (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

27.	$1f \frac{2x+4}{(x-1)^3} =$	$\frac{A_1}{(r-1)}$	$+\frac{A_2}{(x-1)^2}$	$+\frac{A_3}{(x-1)^3}$	then $\sum_{i=1}^{3} A^{i}$	is equal to
-----	-----------------------------	---------------------	------------------------	------------------------	-----------------------------	-------------

- (1) A,
- (2) 2A,
- (3) 4A,

28. The period of the function
$$f(x) = |\sin x|$$
 is

- (1) π
- (2) 2π
- (3) 3π

- (1) 1
- (2) 0
- (3) 2
- (4) -1

- (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$

31. If
$$A+B+C = \pi$$
, then $\sin 2A + \sin 2B + \sin 2C =$

(1) 4 cosA sinB cosC

(2) 4 sinA cosB sinC

(3) 4 cosA cosB cosC

(4) 4 sinA sinB sinC

32. The principal solution of
$$Tanx = 0$$
 is

(1) $x = n\pi, n \in \mathbb{Z}$

(2) x=0

(3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$

(4) $x = n\pi + \alpha, n \in \mathbb{Z}$

- (1) $\frac{\pi}{4}$
- (2) $\frac{\pi}{2}$

- (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5
- (4) 4:5:6

35. The value of
$$r.r_1.r_2.r_3$$
 is

- (1) Δ^2
- (2) Δ⁻²
- (3) Δ⁻³
- (4) ∆⁴

36.
$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} =$$

- (1) $\frac{1}{r}$ (2) $\frac{1}{2r}$
- (3) $\frac{1}{R}$
- (4) $\frac{1}{\Lambda}$

37. If
$$a=6$$
, $b=5$, $c=9$, then the value of angle A is

- (1) $\cos^{-1}(2/9)$
- $(2) \cos^{-1}(2/5)$
- (3) $\cos^{-1}(7/9)$ (4) $\cos^{-1}(1/3)$

38. The polar form of complex number
$$1-i$$
 is

- (1) $\sqrt{2}e^{-i\pi/4}$ (2) $\sqrt{2}e^{i\pi/4}$ (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$

39. If
$$1, \omega, \omega^2$$
 be the cube roots of unity, then the value of $2^{\omega^3}.2^{\omega^5}.2^{\omega}$ is

- (1) ω
- (2) ω^2
- (3) 1
- (4) 0

40. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2-c}$
- (2) $\sqrt{f^2-c}$ (3) $2.\sqrt{g^2-c}$ (4) $2.\sqrt{f^2-c}$

41. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is (2, 7), then the other end of the diameter is

- (1) (3, 1)
- (2) (1,3)
- $(3) \quad (-3, -1) \qquad \qquad (4) \quad (-1, -3)$

42. The radius of the circle
$$\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$$
 is

- (1) 2c

- (4) c

43. The parametric equations of the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 are

- (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta, y = a \cos\theta$
- (3) $x = a \cos\theta, y = b \sin\theta$
- (4) $x = a \csc\theta, y = b \cot\theta$

- 44. The equation of the directrix of the parabola $2x^2 = -7y$ is
- (2) 8y-7=0
- (3) 7y+8=0
- (4) 8x-7=0
- 45. The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is
- (2) $c^2 = a^2m^2 b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

- 46. $Lt \frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$ is

 - (1) 3 (2) 2 (3) 4
- 47. $\log i =$ (1) $\pi/2$ (2) $\pi/4$ (3) $i\pi/2$ (4) $i\pi/4$

- 48. $\frac{d}{dx}[\log_7 X] =$
- (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_7^e$ (4) $\frac{1}{x} \log_7^e$

- 49. $\frac{d}{dx}[2\cosh x] =$

 - (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

- 50. $\frac{d}{dx} \left[\cos^{-1} \left(\frac{1 x^2}{1 + x^2} \right) \right] =$

 - (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$
- (3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$

PHYSICS

51.	Ifa	spring has time	period	T, and is cut in	to n eq	ual parts, then th	ne time	period wil	l be
	(1)	$T\sqrt{n}$	(2)	$\frac{\mathrm{T}}{\sqrt{n}}$	(3)	пΤ	(4)	T	
52.	Wh	en temperature i	increas	ses, the frequence	cy of a	tuning fork			
	(1)	increases					***		
	(2)	decreases							
		remains same							
	(4)	increases or de	ecrease	es depending or	the m	aterials		10	
53.	Ifa	simple harmoni	c moti	on is represente	ed by $\frac{a}{a}$	$\frac{d^2x}{dy^2} + \alpha x = 0$, its	time p	eriod is	
		200				2π	-	2π	
	(1)	$2\pi\sqrt{\alpha}$	(2)	2πα	(3)	$\sqrt{\alpha}$	(4)	α.	

54.		nema hall has v			s requi	red to have reve	erberat	ion time of	1.5 seconds.
	(1)	850 w-m ²	(2)	82.50 w-m ²	(3)	8.250 w-m ²	(4)	0.825 w-r	n²
55.	To a	bsorb the sound	in a ha	all which of the	follow	ing are used			
	(1)	Glasses, stores	S		(2)	Carpets, curtai	ins	0.00	
	(3)	Polished surfa	ces		(4)	Platforms			
56.	IfN	represents avaga	adro's	number, then th	e numb	per of molecules	in 6 gı	m of hydrog	en at NTP is
	(1)	2N	(2)	3N	(3)	N	(4)	N/6	
57.	The	mean translation	nal kin	etic energy of a	perfec	t gas molecule a	at the to	emperature	TK is
	(1)	$\frac{1}{2}kT$	(2)	kT	(3)	$\frac{3}{2}kT$	(4)	2kT	
					10-D				
									1

										Boo	Set C	ode :[T2 D
58.	Th	e amount of	heat give	n to a bo	ody which	raises	its t	emperat	ure by 1°C	o):			
	(1)	water equi	valent						at capacity				
	(3)	specific h	eat			(4)			re gradient				
59.	Dur	ring an adiat olute temper	atic proc ature. Th	ess, the	pressure of Cp/Cv for	of a ga gas is	ıs is	found to	be propor	rtiona	al to the	e cube o	of its
	(1)	$\frac{3}{2}$	(2)	$\frac{4}{3}$		(3)	2		(4)	$\frac{5}{3}$			
60.	Cla	dding in the	optical fil	er is m	ainly used	to							
	(1)	to protect t					25						
	(2)	to protect t											
	(3)	to protect t				trengt	h						
	(4)	to protect t						nce					
61.	Two force	quantities A	and B are	related 3 will b	by the rela	ition A	/B =	m wher	e m is linea	ır ma	ss dens	ity and a	A is

- (1) same as that of latent heat
- (2) same as that of pressure
- (3) same as that of work
- (4) same as that of momentum

62. The dimensional formula of capacitance in terms of M, L, T and I is

- (1) [ML²T²]²]
- (2) $[ML^{-2}T^4I^2]$
- (3) $[M^{-1}L^{3}T^{3}\Pi]$
- (4) $[M^{-1}L^{-2}T^4I^2]$

63. If l, m and n are the direction cosines of a vector, then

- (1) l+m+n=1 (2) $l^2+m^2+n^2=1$ (3) $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}=1$ (4) lmn=1

64. The angle between i+j and j+k is

- (1) 0°

- (4) 60°

- 65. A particle is moving eastwards with a velocity of 5 ms⁻¹. In 10 seconds the velocity changes to 5 ms⁻¹ northwards. The average acceleration in this time is
 - (1) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-west
- (2) zero
- (3) $\frac{1}{2}$ ms⁻² towards north
- (4) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-east
- 66. The linear momentum of a particle varies with time t as $p = a + bt + ct^2$ which of the following is correct?
 - Force varies with time in a quadratic manner.
 - (2) Force is time-dependent.
 - (3) The velocity of the particle is proportional to time.
 - (4) The displacement of the particle is proportional to t.
- 67. A shell of mass m moving with a velocity v suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is
 - (1) v
- (2) 2v
- (3) 3v/4
- (4) 4v/3

- The velocity of a freely falling body after 2s is
 - (1) 9.8 ms⁻¹
- (2) 10.2 ms⁻¹
- (3) 18.6 ms⁻¹
- (4) 19.6 ms⁻¹
- 69. A large number of bullets are fired in all directions with the same speed u. The maximum area on the ground on which these bullets will spread is
 - (1) $\frac{\pi u^2}{g^2}$ (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ (4) $\frac{\pi u}{g^4}$

- The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is μ , will be
- (1) $\frac{v^2}{2\mu g}$ (2) $\frac{v^2}{\mu g}$ (3) $\frac{v^2}{4\mu g}$ (4) $\frac{v}{2\mu g}$

Set Code :	T2
Booklet Code :	D

71.	Who	en a bicycle is in motion, the force of	frictio	n excreted by the ground on the two wheels i								
		that it acts										
	(1)	1) In the backward direction on the front wheel and in the forward direction on the rear wheel										
	(2)	In the forward direction on the front v	wheel a	and in the backward direction on the rear whee								
	(3)	In the backward direction on both the	e front	and the rear wheels								
	(4)	In the forward direction on both the f	ront a	nd the rear wheels								
72.	ln a	perfectly inelastic collision, the two b	odies	8								
	(1)	strike and explode	(2)	explode without striking								
	(3)	implode and explode	(4)	combine and move together								
73.		er the action of a constant force, a part	icle is	experiencing a constant acceleration, then the								
	(1)	zero	(2)	positive								
	(3)	negative	(4)	increasing uniformly with time								
74.	Con	sider the following two statements:		# -								
	A:	Linear momentum of a system of par	rticles	is zero.								
	B:	Kinetic energy of a system of particl	es is z	ero.								
	Then	1										
	(1)	A implies B & B implies A	(2)	A does not imply B & B does not imply A								
	(3)	A implies B but B does not imply A	(4)	A does not imply B but B implies A								
75.		engine develops 10 kW of power. How ht of 40 m? (Given g = 10 ms ⁻²)	v mucl	n time will it take to lift a mass of 200 kg to a								
	(1)	4- (2) 5-	(2)	96 (4) 106								

Set Code :	T2
Booklet Code :	D

CHEMISTRY

 A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its har- terms of calcium carbonate equivalent is 								ite. Then, its hardness in	
	(1)	1.0 ppm	(2)	1.20 ppm	(3)	0.60 ppm	(4)	2.40 ppm	
77.	Sod	a used in the L-S	S proce	ess for softening	of wa	ter is, Chemicall	y.		
	(1)	sodium bicarbo	onate		(2)	sodium carbona	ite dec	cahydrate	
	(3)	sodium carbon	ate		(4)	sodium hydrox	ide (4	0%)	
78.	The	process of ceme	ntatio	n with zinc powd	ler is k	known as			
	(1)	sherardizing	(2)	zincing	(3)	metal cladding	(4)	electroplating	
79.	Carı	rosion of a metal	l is fas	test in					
	(1)	rain-water	(2)	acidulated wate	r(3)	distilled water	(4)	de-ionised water	
80.	Whi	ich of the follow	ing is	a thermoset poly	mer?			•	
	(1)	Polystyrene		•	(2)	PVC			
	(3)	Polythene			(4)	Urea-formaldel	nyde r	esin	
81.	Che	mically, neopren	e is						
	(1)	polyvinyl benze	ene		(2)	polyacetylene			
	(3)	polychloroprer	ne		(4)	poly-1,3-butadie	ene		
82.	Vulc	canization involv	es hea	ting of raw rubber	r with				
	(1)	selenium eleme	ent		(2)	elemental sulph	ur		
	(3)	a mixture of Se	and el	emental sulphur	(4)	a mixture of sele	enium	and sulphur dioxide	
33.	Petro	ol largely contain	ns						
	(1)			ted hydrocarbons	C - (C.			
	(2)			toluene and xyle		8			
	(3)			hydrocarbons C		na n			
	(4)			hydrocarbons C					
	100				0 0 4-N				

Set Code :	T2
Booklet Code :	D

0.4	W/b	ich of the follow	vina aa	aga ia langalu m	oon on all	ala for acid rain	.0		
04.		ich of the follov SO, & NO,	ving ga	ses is largely it	-	CO, & water v			
		$CO_2 \& N_2$				N ₂ & CO ₂	upoui		
85.		D stands for							
		Biogenetic Ox			200	Biometric Oxy	_		
	(3)	Biological Ox	ygen D	emand	(4)	Biospecific Ox	kygen l	Demand	
86.	The	valency electro	nic cor	nfiguration of F	hospho	rous atom (At.)	No. 15) is	
	(1)	$3s^2 3p^3$	(2)	$3s^13p^33d^1$	(3)	$3s^23p^23d^1$	(4)	3s1 3p2 3d2	
87.	Ane	element 'A' of A	t No. 12	combines with	an elen	nent 'R' of At N	o 17 T	The compound formed	is
07.		covalent AB							13
00	The				C I	D-137 :-			
88.		number of neut			50				
	(1)	56	(2)	137	(3)	193	(4)	81	
89.	Hyd	rogen bonding i	in wate	r molecule is re	esponsil	ole for			
	(1)	decrease in its	freezii	ng point	(2)	increase in its	degree	of ionization	
	(3)	increase in its	boiling	g point	(4)	decrease in its	boiling	g point	
90.	In th	e HCl molecule	, the bo	onding between	hydrog	gen and chlorine	is	(9)	
	(1)	purely covalen	t (2)	purely ionic	(3)	polar covalent	(4)	complex coordinate	
91.	Pota	ssium metal and	i potas:	sium ions					
		both react with			(2)	have the same	numbe	r of protons	
	(3)	both react with	chlori	ne gas	(4)			nic configuration	
92.	5.85	gms of sodium	chlori	de were dissolv	ved in v	vater and the so	lution	made upto 100 ml in	а
	stand		of this	solution were p	ipetted o	out into another f	lask an	d made up with distille	
		0.1 M	(2)	1.0 M		0.5 M	(4)		
	(1)	V.1 IVI	(2)	1.0 141	2000000	U.J IVI	(+)	U.23 IVI	
					15-D				

Set Code :	
Booklet Code :	D
Bookiet Code .	D

93.	Con	centration of a	0 M s	olution of p	hosphoric	acid in water i	s		
93.		0,33 N	(2)	1.0 N		2.0 N	(4)	3.0 N	
94.	Whi	ch of the follow	ing is a	Lewis acid	?				
	(1)	Ammonia			(2)	Berylium chl	oride	100	
	(3)	Boron trifluor	ide '		(4)	Magnesium	oxide		
95.	Whi	ch of the follow	ing co	nstitutes the	componer	nts of a buffer	solution	1?	
	(1)	Potassium chlo	oride a	nd potassiun	n hydroxid	e			
	(2)	Sodium acetat	e and a	cetic acid					
	(3)	Magnesium su	lphate	and sulphuri	ic acid				
	(4)	Calcium chlor						25	
96.	Whi	ich of the follow	ving is	an electroly	te?				
		Acetic acid	(2)		(3)	Urea	(4)	Pyridine	
97.	Calc E ⁰ C	culate the Stand Cu/Cu ⁺² = $(-)$ 0.3	lard en 34 V.	of the cel	l, Cd/Cd+2	//Cu ⁺² /Cu give	en that E	E ⁰ Cd/Cd ⁺² =	= 0.44V and
		(-) 1.0 V		1.0 V	(3)	(-) 0.78 V	(4)	0.78 V	
98.	A so	olution of nicke	l chlori	de was elec	trolysed us	sing Platinum	electrod	les. After el	ectrolysis,
	(1)	nickel will be	deposi	ted on the ar	node				
i.	(2)	Cl, gas will be							
	(3)	H, gas will be	liberat	ed at the and	ode				10.00
	(4)	nickel will be							
99.	Wh	ich of the follov	ving m	etals will un	dergo oxid	ation fastest?			
0.50		Cu		Li	(3)	Zinc	(4)	Iron	
100	Wh	ich of the follow	ving ca	nnot be used	d for the st	erilization of o	lrinking	water?	
100	(1)	Ozone			(2)	Calcium Ox	ychlorid	e	
	(3)	Potassium Ch	loride		(4)	Chlorine wa			
	(3)	, ottosattiii Oli			3.02				

Set Code :	T2
Booklet Code :	D

ELECTRONICS AND INSTRUMENTATION ENGINEERING

101	. Ind	uction heating may be employed			
	(1)	for annealing of brass	(2)	for heating of plastics	
	(3)	in a hot plate	(4)	for heating of wood	
102	. The	e solar cell is a type of	devices		
	(1)	photovoltaic	(2)	photoconductive	
	(3)	photo emissive	(4)	electromotive	
103	. Wh	ich of the following is false with re	espect to R	oot locus	
	(1)	It is used to determine the stabili	ty of the sy	ystem	
	(2)	It is designed to find the damping	g ratio of th	ne system	
	(3)	It is used to calculte the natural fi	requency o	of the feedback system	
	(4)	It is used to determine the imped			
104.	The stab	Routh-Hurwitz Stability criterion ility of control sy	is a neces	ssary and sufficient method to establish	the
	(1)	Multiple-input, single-output, nor		ne invariant	
	(2)	Multiple-input, multiple-output, l			
	(3)	A single-input, single-output, line			
	(4)	A single-input, multiple-output, no			
05.	Ope	n loop system			
	(1)	shows Negative feed back			
	(2)	can counter act aganist disturbance	es		
	(3)	the controlled variable does not fa			
	(4)	cannot become unstable-as long a		olled object is stable	

17-D

			Booklet Code : D
Whi	ch type of impurity is added to	o form a n-type	extrinsic semiconductor
(1)	Aluminum	(2)	Indium
(3)	Gallium	(4)	Arsenic
The			within a particular side of the pn junction is
(1)	inversely proportional	(2)	proportional
(3)	independent	(4)	square root
Pres	ence of emitter circuit bypass	capacitor adve	ersely affects the
(1)	low frequency response	(2)	midband response
(3)	high frequency response	(4)	response over the complete frequency range
The	higher the frequency of the al	ternating curre	nt in the inductance, the eddy current loss is
(1)	less	(2)	more
(3)	medium	(4)	not change
Und	er reverse bias, zener diode ca	in be used as a	
(1)	current regulator	(2)	voltage regulator
(3)	frequency regulator	(4)	phase regulator
Both	n thejunctions of a transistor a	re in forward b	ias then it is operated inregion
(1)	cut-off	(2)	active
(3)	saturation	(4)	cross-over
Afte	er applying voltage between so	urce and drain	terminals of a JFET, the channel becomes
(1)	uniform	(2)	nonlinear
(3)	linear	(4)	wedge shaped
	(1) (3) The (1) (3) Press (1) (3) The (1) (3) Und (1) (3) Both (1) (3) Afte (1)	(1) Aluminum (3) Gallium The penetration depth of the depto the doping concentration (1) inversely proportional (3) independent Presence of emitter circuit bypass (1) low frequency response (3) high frequency response The higher the frequency of the all (1) less (3) medium Under reverse bias, zener diode can (1) current regulator (3) frequency regulator Both thejunctions of a transistor and (1) cut-off (3) saturation After applying voltage between so (1) uniform	The penetration depth of the depletion region reto the doping concentration (1) inversely proportional (2) (3) independent (4) Presence of emitter circuit bypass capacitor advection (1) low frequency response (2) (3) high frequency response (4) The higher the frequency of the alternating currence (1) less (2) (3) medium (4) Under reverse bias, zener diode can be used as a (1) current regulator (2) (3) frequency regulator (4) Both thejunctions of a transistor are in forward by (1) cut-off (2) (3) saturation (4) After applying voltage between source and drain (1) uniform (2)

Set Code : T2

(EIE)

Set Code :	T2
Booklet Code :	

					19-D			(EIE)
	(3)	$\eta V_{BB} + V_{D}$	10411		(4)	$\eta V_D^+V_{BB}$		Ta .
		η V _{BB}				ηV_{D}		
119.	give	n by	the v	oltage across tw			mitter	potential at peak point is
	(4)	Smaller the dc v	oltag	e across the loa	d			
	(3)	Longer the time				s through the di	ode	
	(2)	Larger the peak					(4)	
	(1)	Larger the peak	-to-pe	eak value of the	ripple	voltage		
118.	The	larger the value of	of the	filter capacitor				
		0.01	(2)	0.02	(3)	0.001	(4)	0.0002
117.	If in	a rectifier, the rip	pie vo	oltage is 100 m v	and th	le de value is 10	v, men	the ripple factor is given
					7 1 41-	- dl i- 10	U shan	the simple feator is given
	(3)	zero spike		*	(4)	no trigger pul	se is re	quired
	(1)	positive spikes			(2)	negative spike		
116.	Mon	ostable multivib	rator	requires	typ	oe of trigger pul	lse.	
		Class A	(2)			Class C	(4)	Class AB
115.	Cros	s-over distortion	can t	be eliminated by	biasir	ng the circuit in		
	(3)	LC oscillator		*	(4)	Crystal		
	(1)	RC phase shift			(2)	Wein bridge		
114.	Whi	ch of the following	ng oso	cillator uses boti	h posit	ive and negative	e feedb	ack
	(1)	1	(2)	2	(3)	5	(4)	6
113.	The	number of RC se	ction	s required in ph	ase shi	ift oscillator is a	at least	

		2								t Code :[t Code :[
									Bookie	Code :[U
120.	The	output of gate is	low it	and on	ly if all i	ts inpu	ts are equal				
		Ex-OR		AND	•		OR	(4)	NOR		
	0.0										
121.	Anı	n-bit register requ	ires		number	of Flip	-Flops.				
	(1)	2n	(2)	n + 1		(3)	2 ⁿ	(4)	n		
122.	The	counters can be u	ised i	n the m	easureme	ent of					9
	(1)	voltage	(2)	time		(3)	distance	(4)	length		
123.	The	memory which r	equir	es a ref	resh cycl	e is					
	(1)	PROM				(2)	Static RAM				
	(3)	Dynamic RAM				(4)	Magnetic tap	e			
		W									
124.	Whi	ch of the following	ng is l	known	as half-ac						87
	(1)	XOR gate				(2)	XNOR gate				
	(3)	NAND gate				(4)	NOR gate				
					g: g	41	4b. o o i	number	ofstates	that the c	ounter
125.		counter is connec	ted us	ing six	Hip-Hops	s, men	the maximum	lumber	OI states	mat the c	ounter
	(1)		(2)	256		(3)	8	(4)	64		
	(1)	Ü	(2)	200		(-)					
126	The	number of flip-f	lops i	eauirea	for a mo	od-161	ring counter ar	e			
120.	(1)		(2)	8			10		16		
	(-)	-	,			18.5					
127.	The	digital operation	s suc	h as AN	ID, OR, 1	NOT e	tc., can be perfe	ormed b	y using		
		Amplifiers				(2)	switches				
	(3)	rectifiers				(4)	oscillators				
	, ,										
		6									
						20-D		70			(EIE)

Set Code :	T2
Booklet Code :	

(3		analog divider	(4)	analog ladder
0.72				
(1	1)	binary divider	(2)	binary ladder
133. T	he_	is a network of resistors contain	ning or	nly two values.
(.,	A possess the auvalrages of both DSI	o and s	ob system
		It possess the advantages of both DSI		
		It results in power boost of low video	- 20 an 5	
		It overcomes the problem of low vide	_	11: 10
				of 2 MHz per channel over a DSB system
132 0)ne o	of the following is a disadvantage of V	/SB ev	stem
(2	3)	1200.2 KHz to 1205 KHz	(4)	1202 KHz to 1205 KHz
(1)	1205 KHz to 1200 KHz	(2)	1200 KHz to 1195 KHz
si	ide t	oand frequencies are		
131, A	A car	rier of 1200 KHz is amplitude modula	ited by	an AF signal from 200 HZ to 5 KHz. The upper
(-	5)	1300 WHIZ to 3000 WHIZ	(4)	4233 WITE to 3000 WITE
	(3)	1500 MHz to 3800 MHz	(4)	4235 MHz to 5000 MHz
	(1)	100 Hz to 100 KHz	(2)	500 KHz to 1600 KHz
130 4	Δ me	edium wave transmitter works in the fi	reaven	cy range of
((3)	negative and positive	(4)	positive and negative
((1)	Both are positive	(2)	both are negative
129. T	The	reference and output voltages in the la	adder t	ype D/A converter are respectively
((4)	The type of interfacing		
((3)	The number of bits in the output wor	rd	
((2)	The number of bits in the input word	ı	
	(1)	Start conversion time		
128. 7	The	resolution of an A/D converter is dete	ermine	d by

Set Code :	T2
Booklet Code :	D

134.	The	voltage gain o	f the vol	tage followe	r circuit u	sing op-amp	is	
	(1)	$1 + R_f/R_i$	(2)	R_f/R_i	(3)	R_i/R_f	(4)	one
135.	Whi	ch of the follo	wing cir	cuit does no	t use a PL	L?		*
	(1)	FM demodul	ating		(2)	frequency n	nultiplyin	g
	(3)	frequency sy	nthesis		(4)	voltage regi	ulation	
136.	The	pulse width of	a astabl	e multivibrat	or is given	by.		
		0.48 RC	(2)			1.38 RC	(4)	1.38 R/C
137.	How	many op-am	does it	take to const	truct an in	strument am	plifier	
	(1)		(2)		(3)		(4)	6
138.	The	resolution of a	four bit	DVM is				
	(1)	0.1V	(2)	0.01 V	(3)	0.001 V	(4)	0.0001 V
139.	Succ	cessive approx	imation	DVM is also	called			
77	(1)	dual slope D	VΜ		(2)	differential	voltmete	r
	(3)	potentiometr	ic DVM		(4)	ramp type D	VM	
140.	A C	RO is generall	y used to	measure				
	(1)	temperature			(2)	pressure		
	(3)	amplitude			(4)	all the above	e	
141.		n two periodic					out of ph	ase with each other are
	(1)	a straight line			(2)	circle		
	(3)	ellipse			(4)	parabola		
					22-D			(EIE)

Set Code :	T2
Booklet Code :	D

								Bookier Code . D
142	. A sp	pectrum analyser erator.	is act	ually a heterodyr	ne recei	ver in which the	local o	oscillator is a
	(1)	pulse	(2)	sweep	(3)	square wave	(4)	sine wave
143	. Q-N	Meter is used to	detern	nine	of a	component.		
		frequency					(4)	all
144	. Whi	ich of the follow Q-meter?	ing m	ethod is used to	conne	ct the unknown	compo	onent to the test terminal
	(1)	direct	(2)	series	(3)	parallel	(4)	all
145	. In a	digital frequency	y mete	er, the assembly	consis	ting of two AND	gates	and the two flip-flops is
	(1)	decade counter			(2)	gate control se	tup	
	(3)	Schmitt trigger	CC.		(4)	read counter		
146.	In in	strumentation th	e para	ameter being me	easure	is called		
146.		strumentation the				l is called measurand		sink
	(1)	error detector	(2)	source	(3)	measurand	(4)	37.
	(1)		(2)	source	(3) ue valu	measurand	(4)	37.
147.	(1) The (1)	error detector nearest of the inc precision	(2) dicated (2)	source d value to the tre error	(3) ue valu (3)	measurand e of the quantity accuracy	(4)	led
147.	(1) The r (1) Piran	nearest of the incorprecision	(2) dicated (2)	source d value to the tre error	(3) ue valu (3) ransdu	measurand e of the quantity accuracy	(4) is call (4)	led
147. 148.	(1) The (1) Piran (1)	nearest of the incorprecision	(2) dicated (2) ample (2)	source d value to the treerror oft capacitive	(3) ue valu (3) ransdu	measurand e of the quantity accuracy cer.	(4) is call (4)	led sensitivity

23-D

								Booklet Coo	ie: D
150.	Mult	titurn potentiom	eter ca	an measure a m	aximur	n of	degre	es.	
	(1)			300		360		3500	
151	T	poissions ratio f	or all	strain guage m	aterial li	es hetween			
151.							(4)	0-2	, v
	(1)	0-0.5	(2)	0-1	(3)	0-1.5	(4)	0-2	
152.	For	capacitive transd	lucers	the equation fo	r the cap	oacitive of a para	allel pl	ate capacitor	is given by
		$C = d / \in A$				$C = \in A/d$			
162	Min	rophone is a		type of trans	ducer				
133.				_type of trails	(2)	resistive			
	(1)	capacitive				mechanical			
	(3)	inductive			(4)	mechanical			
154.	The	pH of a solution	ı is pr	oportional to_					
	(1)	log[H ⁺]	(2)	-log[H ⁺]	(3)	1/log[H ⁺]	(4)	-log[H-]	
166	ть.	-11 - Chlood for		aal human hein	a is				
155.		pH of blood for	a nom	nai numan bem		basic			
		acidic			(2)				
	(3)	neutral	72		(4)	highly acidic			
156.	Ina	magnetic flow n	neter t	he induced volt	tage due	to flow is giver	by		
	(1)	E=BC/LV			(2)				
	(3)	E=(B+L+C+V)		(4)	E=BCLV			
	****	Cab a Callana		n ha usad as ni	azo elec	etric materials?			
157.		ich of the follow	mg ca	n be used as pr		ceramics A&E			
	(1)	Rochelle salt					•		
	(3)	lithium sulphat	te		(4)	all			
									(EIE)
					24-D				(Cic)

								Booklet Code	: D
į8.		particles	have n	eutral charge.					
J	(1)	Alpha			(2)	Beta			
	(3)	Gamma			(4)	Positrons			
59.		is also ca	lled a v	ariable area r	neter.			ŷ.	
1	(1)	Rotameter			(2)	Mmanomete	r		
	(3)	Venturimeter			(4)	Orficemeter			
60.		is also a	unit o	f temperature.					
		Candela				Volt	(4)	Rankine	
3									
161.	The	Reynolds numb				DOSENSKI			
	(1)	1000	(2)	2000	(3)	3000	(4)	4000	
162.	The	response of a ti	me cor	nstant element	for a ste	p change in ir	put is		
•		Unity			(2)	404			
	(3)	Exponential			(4)	Infinity			
163	Res	et action is anot	ther na	me forc	ontrol mo	ode.			
	(1)	Two-position				Proportiona	1 ,		
	(3)	Derivative			(4)	Integral			
164	. A P	ID control mode	e has			ē.			
	(1)	Faster respon			(2)	Slower resp	onse		
	(3)	More dead tin		(4	(4)				
	(5)	more dead th							
165	. A P	-controller has	a gain o	of 50. Its prop	ortional b	and is			
	(1)		(2)		(3)		(4)	1	

Set Code : T2

								Set Code	e: T2
								Booklet Code	e : D
166.	Diff	erentiate gap is	intenti	onally incorp	orated in	some process	es to pr	event	effect.
	(1)	Excessive cycli	ing		(2)	Saturation			
	(3)	Clamping			(4)	Aliasing		88 8	
167.		rocess controller roller and the se		h of the follow	wing can	be used for si	gnals tra	ansmission bet	ween the
	(1)	Electric	(2)	Pneumatic	(3)	Hydraulic	(4)	All	
9	5								
168.	In p	neumatic contro	llers _	are use	d for app	olying the sign	als from	the sensors.	
	(1)	Op-Amps	(2)	Gears	(3)	Bellows	(4)	Piston	
				- Nacion Military and Australia					
169.		forces that act or	n an ac	ctuator are	(0)	0 0	c .		
	(1)	Inertia forces			(2)	Static friction			
	(3)	Thrust forces			(4)	All of the abo	ove		
								•	-
170.	Whi	ch of the follow	ing dis	strubances oc	cur in a p	rocess control	?		
	(1)	Transient			(2)	Set-point cha	nges		
	(3)	Load changes			(4)	All of the abo	ove		
171	Gen	erally in a casca	de con	strol	mode i	s used in a sec	ondary	loop.	
1/1.	(1)		(2)		(3)		(4)	PID	
	(-)		(-).		(-)				
172.	In a	ratio control sys	tem, t	he ratio factor	r 'K' lies	between	a	nd	
	(1)		(2)			3,30	(4)	1,100	
173.	In di	stillation colum	ns	are se	parated.				
	(1)	Two liquids			(2)	Oone solid &	one liq	uid	
	(3)	Two gases			(4)	None			
					26-D				(EIE

Set Code :	T2
Booklet Code :	D

174.	An	element used	to provid	e necessary	linear rota	ry motion fo	r a contro	l valve stem is	called
	(1)	Actuator			(2)	Plug			
	(3)	Spring			(4)	Bellows			
175.	Spe	ctroscopy dea	ls with th	ne study of in	nteraction	of	_ with m	atter.	
	(1)	Electromagn	netic radi	ations	(2)	current			
	(3)	frequency		94	(4)	density			
176.	Due	etarium lamps	are bette	r suited sou	rces in the		region.		
	(1)	UV	(2)	visible	(3)	IR .	(4)	microwave	
177.	Ina	gas-liquid-chi	romatogr	aphy the car	rier phase	is			
	(1)	Solid	(2)	liquid	(3)	gas	(4)	all	
178.	The	efficiency of	a distilla	tion column	is express	sed in terms of	of		
	(1)					detector res		•	
	(3)					type of sam	Ş.,		
179.	The	paramagnetic	gases are	;					
	(1)				(2)	Hydrogen			
	(3)	Nitrogen			(4)	Oxygen			
180.	Sing	gle focusing m	agnetic s	sector analys	ser is	degree	analyser.		
	(1)	f.,,,,,,,,,	1734	180		270		360	
81.	Pape	er chromatogr	aphy is a	lso called		chromatogr	aphy.		
	(1)		(> "		(2)	gas			
	(3)	liquid			(4)	adsorption			
						¥.			

								Booklet C	oue : D	_
182	Flect	tromyogram pot	entials	s are associated	with		activity	<i>.</i>		
102.		brain		muscle	(3)	heart	(4)	kidney		
						¥				
183.	PQR	ST wave is asso	ciated	with	200					
		EEG		ECG	(3)	EMG	(4)	EGG		
194	The	principle ions p	resent	in the body fluid	ds are					
104.	(1)	Sodium		•	(2)	Potassium				
	(3)	Chloride			(4)	All				
	(5)	Cinorias								
185	805	l control has	1	register banks.						
	(1)	One			(2)	Two				
	(3)	Three			(4)	Four				
	Tri .	following bits in	n IE re	oister disable al	l inter	unts simultane	ously			
186				EA	(3)	ES	(4)	ACC		
	(1)	ETO	(2)	IX.	(5)					
187	. Lad	der diagram are	used in	n						
	(1)				(2)	Computers				
		Microprocess	or		(4)	Actuator				
100	. T	nicrocontroller	2051	the total no. of t	three b	vte instruction	s are			
188				45	(3)	49	(4)	111		
	(1)	17	(2)		, ,			14		
189).	ca	lled a	PPI controller.						
		8251			(2)	8255				
	71.74.0001	8257			(4)	8259				

(EII

									Booklet	Code : D
190.	. The	scratchpad area o	fRA	M of 8	3051 has _		_bytes.			
	(1)	20	(2)	40		(3)	80	(4)	100	
	,					2,03%				
191.	Thr	ee equal resistors o	f3Ω	each a	re star cor	necte	d. Their equi	valent delt	a connecte	d resistance is
	(1)	1 Ω				(2)	12 Ω			
	(3)	6 Ω				(4)	9 Ω			
192.	Wh	ile finding theven	n's r	esistan	ce, voltag	e sou	rces if any a	re set to ze	ro by	
	(1)	short circuiting				(2)	Open circu	uiting		
	(3)	connecting in se	ries v	with lo	ad	(4)	connecting	g in paralle	l with load	Γ,
193.	In a	self excited deger	erate	or, the	initial flux	k is pr	oduced due	to		
	(1)	the saturation of	core	:		(2)	eddy curre	nts		
	(3)	hysteresis		1,53		(4)	residual ma	agnetism		
194.	Whi	ich of the followin	g is a	a cause	for the pr	roduc	tion of back	emf.		
	(1)	generator action				(2)	motor action	on		
	(3)	armature reactio	n			(4)	eddy curre	nts		
95.	The	effective value of	the in	nduced	l voltage i	n a tra	nsformer wi	inding is re	epresented	by
88	(1)	$4.44 \text{fN}^2 \varphi_{\text{m}}$				(2)	4.44 fN φ	n		
		4.44 fN B _m				(4)	$4.44 \mathrm{fN} \varphi_{ \mathrm{m}}$	A	27	4
96.	Whi	ch of the followin	g sta	tement	is true w	ith res	spect to sync	hronous n	notor	
1	(1)	it is not self-star	ing							
	(2)	it is self-starting								
	(3)	it can run at any s	peed	U						
	(4)	it can run at a spe	ed c	lose to	the synch	ronoi	is speed			

Set Code : T2

(EIE)

			Set Code: T2
			Booklet Code : D
Pho	todetectors are used in	switching	circuits.
(1)	magnetic	(2)	electric
(3)	current	(4)	twilight
ALI	ED prepared with GaAs _{1-x} P _x	with x =0.4 give	scolor.
(1)	blue	(2)	green
(3)	yellow	(4)	red
Pho	to voltaic cells are two-termi	nal devices that	vary their with exposure to light.
(1)	input voltage	(2)	input current
(3)	output voltage	(4)	output current
		one with respec	t to the advantages of projection welding ove
(1)	More than one weld can be	done at a time to	o obtain more output
(2)	The life of electrodes is les	s because of lov	v current density
(3)	The finish is good as the su	rface remains u	nindented by electrodes
(4)			
	(1) (3) ALI (1) (3) Pho (1) (3) The spot (1) (2) (3)	(1) magnetic (3) current A LED prepared with GaAs _{1-x} P _x (1) blue (3) yellow Photo voltaic cells are two-termic (1) input voltage (3) output voltage The following all are true except spot welding (1) More than one weld can be (2) The life of electrodes is less (3) The finish is good as the sur	(3) current (4) A LED prepared with GaAs _{1-x} P _x with x =0.4 give (1) blue (2) (3) yellow (4) Photo voltaic cells are two-terminal devices that (1) input voltage (2) (3) output voltage (4) The following all are true except one with respect spot welding (1) More than one weld can be done at a time to (2) The life of electrodes is less because of low (3) The finish is good as the surface remains units of the surface remains of the surface remain