Set Code :	T2
Booklet Code :	A

Note: (1) Answer all questions.

(2) Each question carries 1 mark. There are no negative marks.

(3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.

(MEC)

MECHANICAL ENGINEERING INSTRUCTIONS TO CANDIDATES

Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on
the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING,
THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE
HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE.
SHEET, DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.

Immediately on opening this Question Paper Booklet, check:

- (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
- (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.

3. Use of Calculators, Mathematical Tables and Log books is not permitted.

- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.

8. The OMR Response Sheet will not be valued if the candidate:

- (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
- (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.

(c) Adopts any other malpractice.

- 9. Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.

11. Timings of Test: 10.00 A.M. to 1.00 P.M.

- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.

14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

I-A

(MEC)

Set Code : T2

Booklet Code : A

Note: (1) Answer all questions.

- (2) Each question carries I mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.

MATHEMATICS

1. If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $A^4 =$

- (1) 3I
- (2) 91
- (3) 271
- (4) 811

2. If
$$A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$$
 is a skew symmetric matrix, then the value of x is

- (1) 1
- (2) 2
- (3) 3
- (4) 4
- 3. What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3
 - (1) 64
- (2) 268
- (3) 512
- (4) 256

4. If
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then $|A| =$

- (1) 1
- (2) 2
- (3) 3
- (4) 4

- The solution of a system of linear equations 2x y + 3z = 9, x + y + z = 6, x y + z = 2 is
 - (1) x = -1, y = -2, z = -3
- (2) x = 3, y = 2, z = 1
- (3) x = 2, y = 1, z = 3

- (4) x = 1, y = 2, z = 3
- 6. If $\frac{1}{r^2 + a^2} = \frac{A}{r + ai} + \frac{B}{r ai}$ then A = _____, B = _____.
- (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

- 7. If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then $\sum_{i=1}^3 A_i$ is equal to

- (1). A_2 (2) $2A_2$ (3) $4A_2$ (4) $4A_1$
- 8. The period of the function $f(x) = |\sin x|$ is
 - (1) π
- (2) 2π
- (3) 3π (4) 4π
- If $A+B=45^{\circ}$, then $(1-\cot A) \cdot (1-\cot B)$ is 9.
 - (1) 1
- (2) 0
- (3) 2 (4) -1
- 10. The value of $\sin 78^\circ + \cos 132^\circ$ is

- (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$
- 11. If A+B+C = π , then sin2A + sin2B + sin2C =
 - (1) 4 cosA sinB cosC

(2) 4-sinA cosB sinC

(3) 4 cosA cosB cosC

- (4) 4 sinA sinB sinC
- 12. The principal solution of Tanx = 0 is
 - (1) $x = n\pi, n \in \mathbb{Z}$

- (2) x=0
- (3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$
- (4) $x = n\pi + \alpha, n \in \mathbb{Z}$

12	The sealess of Ton-I	(2) + Ton-1	(2) ic
13.	The value of Tan-1	(2) $+$ $1an$	(2) 19

- (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5
- (4) 4:5:6

15. The value of
$$r.r_1.r_2.r_3$$
 is

- (1) Δ^2

- $(4) \Delta^4$

16.
$$\frac{1}{r1} + \frac{1}{r2} + \frac{1}{r3} =$$

- (1) $\frac{1}{r}$ (2) $\frac{1}{2r}$

17. If
$$a=6$$
, $b=5$, $c=9$, then the value of angle A is

- (1) $\cos^{-1}(2/9)$ (2) $\cos^{-1}(2/5)$ (3) $\cos^{-1}(7/9)$ (4) $\cos^{-1}(1/3)$

18. The polar form of complex number
$$1-i$$
 is

- (1) $\sqrt{2}e^{-i\pi/4}$ (2) $\sqrt{2}e^{i\pi/4}$ (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$

19. If
$$1, \omega, \omega^2$$
 be the cube roots of unity, then the value of $2^{\omega^3}.2^{\omega^5}.2^{\omega}$ is

- (1) ω
- (2) ω^2
- (3) 1
- (4) 0

20. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2-c}$ (2) $\sqrt{f^2-c}$ (3) $2.\sqrt{g^2-c}$ (4) $2.\sqrt{f^2-c}$

21. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is (2, 7), then the other end of the diameter is (1) (3, 1) (2) (1, 3) (3) (-3, -1) (4) (-1, -3)

- (1) (3, 1)
- (2) (1,3)

- 22. The radius of the circle $\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$ is
- (2) 4c

- 23. The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are
 - (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin \theta, y = a \cos \theta$
- (3) $x = a \cos\theta, y = b \sin\theta$
- (4) $x = a \csc\theta, y = b \cot\theta$
- 24. The equation of the directrix of the parabola $2x^2 = -7y$ is
 - (1) 8y+7=0
- (2) 8y-7=0
- (3) 7y+8=0 (4) 8x-7=0
- 25. The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is
 - (1) c = a/m
- (2) $c^2 = a^2m^2 b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

- 26. Lt $\frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$ is
 - (1) 3
- (2) 2

- 27. $\log i = -$
 - (1) $\pi/2$
- (2) $\pi/4$
- (3) $i\pi/2$

- 28. $\frac{d}{dx}[\log_7 X] =$

- (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_e^7$ (4) $\frac{1}{x} \log_7^e$
- 29. $\frac{d}{dx}[2\cosh x] =$
 - (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

$$30. \quad \frac{d}{dx} \left[\cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right] =$$

- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$
- (3) $\frac{2}{1+x^2}$

31. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$

- (1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$ (4) $\sqrt{\frac{x}{y}}$

32. The derivative of
$$e^x$$
 with respect to \sqrt{x} is

- $(1) \quad \frac{2\sqrt{x}}{x^{2}}$
- $(2) \quad 2\sqrt{x}e^x \qquad (3) \quad \frac{e^x}{2\sqrt{x}}$

33. The equation of the normal to the curve
$$y = 5x^4$$
 at the point $(1, 5)$ is

- (1) x + 20y = 99 (2) x + 20y = 101 (3) x 20y = 99 (4) x 20y = 101

34. The angle between the curves
$$y^2 = 4x$$
 and $x^2 + y^2 = 5$ is

- $(1) \frac{\pi}{4}$
- (2) $tan^{-1}(2)$
- $(3) \tan^{-1}(3)$
- $(4) \tan^{-1}(4)$

35. If
$$u = x^3y^3$$
 then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$

- (1) $6(x^3+y^3)$
- (2) $6 x^3 y^3$
- (3) $6x^3$

36. $\int \csc x \, dx =$

- (1) $\log(\csc x + \cot x) + C$
- (2) $\log(\cot x/2) + C$

(3) $\log (\tan x/2) + C$

(4) $-\csc x \cdot \cot x + C$

7-A

Set Code : T

37.
$$\int_0^{\frac{\pi}{2}} \cos^{11} x \, dx =$$

- $(1) \quad \frac{256}{693} \qquad \qquad (2) \quad \frac{256\pi}{693}$

38.
$$\int f^{1}(x) \cdot [f(x)]^{n} dx =$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$

(2)
$$\frac{[f(x)]^{n+1}}{n+1} + C$$

(3)
$$n[f(x)]^{n-1} + C$$

$$(n+1)[f(x)]^{n+1}+C$$

$$39. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

(2)
$$2Tan^{-1}(\sqrt{x+6})+C$$

(3)
$$Tan^{-1}(x+7)+C$$

(4)
$$2Tan^{-1}(x+7)+C$$

40.
$$\int \tan^{-1} x \, dx =$$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$
 (2) $\frac{1}{1+x^2} + C$

(2)
$$\frac{1}{1+r^2}+C$$

(3)
$$x^2 Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1+x^2} + C$$

41.
$$\int \frac{dx}{1+e^{-x}} =$$

(1)
$$\log (1+e^{-x}) + C$$

(3) $e^{-x} + C$

(2)
$$\log(1+e^x) + C$$

(3)
$$e^{-x} + C$$

(4)
$$e^{x} + 0$$

42.
$$\int_{-\frac{\pi}{2}}^{\frac{\tau}{2}} \sin|x| \, dx =$$

- (1) 0 (2) 1 (3) 2

- 43. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is

 - (1) 4 sq. units (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- The order of $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (4) 2

- 45. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{3}{2}} = a \frac{d^2 y}{dx^2}$ is
- (2) 2
- (3) 1
- (4) 3
- 46. The family of straight lines passing through the origin is represented by the differential equation

 - (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0
- 47. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + by + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear (4) Legender
- 48. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $y e^{-x^2} = x + c$ (2) $y e^x = x + c$ (3) $y e^{x^2} = x + c$ (4) y = x + c

- 49. The complementary function of $(D^3+D^2+D+1)y = 10$ is
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$
- $(2) \quad C_1 \cos x + C_2 \sin x + C_3 e^x$
- (3) $C_1 + C_2 \cos x + C_3 \sin x$
- (4) $(C_1 + C_2 x + C_3 x^2) e^x$
- 50. Particular Integral of $(D-1)^4y = e^x$ is

 - (1) $x^4 e^x$ (2) $\frac{x^4}{24} e^{-x}$ (3) $\frac{x^4}{12} e^x$ (4) $\frac{x^4}{24} e^x$

Set Code :	T2
Booklet Code :	A

PHYSICS

51. Two quantities A and B are related by the relation A/B = m where m is linear mass density and A is

force. The dimensions of B will be

	(1)	same as that of	latent	heat	(2)	same as	that of pres	sure	
	(3)	same as that of	work	*	(4)	same as	that of mon	nentum	
52.	The	dimensional for	nula o	f capacita	nce in term	s of M, L,	T and I is		35
	(1)	$[ML^2T^2I^2]$	(2)	[ML-2T4]2	(3)	$[M^{-1}L^3T^3]$	(4)	$[M^{-1}L^{-2}T^4]$	[²]
53.	If <i>l</i> ,	m and n are the d	irectio	on cosines	of a vector	, then			*
	(1)	l+m+n=1	(2)	$l^2 + m^2 +$	$n^2 = 1$ (3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{m}$	$\frac{1}{n}=1 \qquad (4)$	lmn = 1	
54.	The	angle between i+	i and i	+k is					
12.00	(1)		(2)	90°	(3)	45°	(4)	. 60°	
55.		article is moving s ⁻¹ northwards. T						s the velocit	y changes to
22	(1)	$\frac{1}{\sqrt{2}}$ ms ⁻² toward	is nort	h-west	(2)	zero			ie ia ži
	(3)	$\frac{1}{2}$ ms ⁻² towards	north		(4)	$\frac{1}{\sqrt{2}}$ ms	² towards no	orth-east	
56.	The	linear momentur	nofa	particle va	aries with ti	me t as p =	$= a+bt+ct^2$	which of the	following is
		Force varies wi	th time	in a quad	ratic mann	er.			
	(2)			100		5	S. 12		
	(3)	The velocity of	_		roportional	to time.			
	(4)	The displacement					Si .		
57.		ell of mass m mo					des into two	pieces. One	part of mass
	(1)		(2)	70.00		3v/4	(4)	4v/3	
					10-A		*		

Set Code :	T2
Booklet Code :	A

							• 0			
58.		elocity of a free 9.8 ms ⁻¹	ly fall (2)	ling body 10.2 ms	after 2	s is (3)	18.6 ms ⁻¹	(4)	19.6 ms ⁻¹	2
59.	A larg	ge nụmber of bu round on which	llets a these	re fired in bullets w	all dire	ections ad is	with the same	speed u	. The maximum	n area on
	(1)	$\frac{\pi u^2}{g^2}$	(2)	$\frac{\pi u^4}{g^2}$	a *	(3)	$\frac{\pi u^2}{g^4}$	(4)	$\frac{\pi u}{g^4}$	*
60.	the c	minimum stoppi oefficient of fric	ction b	etween t	he tyres	s and the	ne road is μ, wi	III de		el road, if
	(1)	$\frac{v^2}{2\mu g}$	(2)	$\frac{v^2}{\mu g}$		(3)	$\frac{v^2}{4\mu g}$	(4)	$\frac{v}{2\mu g}$	
80							. 11 4		nd on the two	wheels is
61.	Whe	n a bicycle is in	motio	on, the fo	rce of f	riction	excreted by tr	ie grou	na on the two	Wilcels is
	such	that it acts		2007			1: 4 6		eastion on the t	ear wheel
	(1)	In the backwar	d dire	ction on the	he front	wheel	and in the forv	vara dii	rection on the i	bool
	(2)	In the forward	directi	ion on the	front v	vheel a	nd in the backv	vard dii	rection on the i	ear wheel
	(3)	In the backwar	d dire	ction on b	oth the	front	and the rear wh	eels		
	(4)	In the forward	direct	ion on bo	th the f	ront ar	d the rear whe	els	5	
62.	Ina	perfectly inelast	tic col	lision, the	e two b	odies				
02.		strike and expl				(2)	explode with	out stril	king	
	(1)					(4)				
	(3)	implode and ex								
63.		er the action of	a cons	stant force	e, a part	ticle is	experiencing a	consta	ant acceleration	n, then the
	pow	er is				(2)	nositive			
	(1)	zero					positive increasing un	iforml	v with time	
	(3)	negative	2			(4)	mcreasing un	morni,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Set Code :	T2
Booklet Code :	A

(2) A does not imply B & B does not imply A

(4) A does not imply B but B implies A

65.		engine develop tht of 40 m? (G		_	w muc	h time will it ta	ke to li	ft a mass of 2	00 kg to a
	(1)	4s	(2)	5s	(3)	. 8s	(4)	10s	
66.	Ifa	spring has time	period	T, and is cut in	to n equ	al parts, then the	ne time	period will be	
	(1)	$T\sqrt{n}$	(2)	$\frac{\mathrm{T}}{\sqrt{n}}$	(3)	пТ	(4)	T	9
67.	Whe	en temperature	increas	es, the frequenc	cy of a t	uning fork			
	(1)	increases		• ;					
	(2·)	decreases				¥.			
	(3)	remains same		ld.					
	(4)	increases or d	ecrease	s depending or	the ma	aterials			
			20						
68.	Ifa	simple harmoni	ic motic	on is represente	d by $\frac{d}{d}$	$\frac{2}{y^2} + \alpha x = 0$, its	time pe	eriod is	
	(1)	2- [-	(2)	200	(3)	$\frac{2\pi}{\sqrt{\alpha}}$	(4)	$\frac{2\pi}{2\pi}$	
	(1)	2πγα	(2)	ZKU	. (3)	√α	(.)	α.	
69.		nema hall has v			s requi	red to have reve	erberati	on time of 1.5	seconds.
	(1)	850 w-m ²	(2)	82.50 w-m ²	(3)	8.250 w-m ²	(4)	0.825 w-m ²	
					12-A				

64. Consider the following two statements:

(1) A implies B & B implies A

(3) A implies B but B does not imply A

Then

A: Linear momentum of a system of particles is zero.B: Kinetic energy of a system of particles is zero.

Set Code :	T2
Booklet Code :	A

		*								
70.	To a	bsorb the so	ound in a h	all wh	ich of the followi	ing are use	ed			
	(1)	Glasses, s	tores		(2)	Carpets,	curtains			:
	(3)	Polished s	surfaces		(4)	Platform	ns			¥
71.	IfN	represents	avagadro's	numb	er, then the numb	oer of mol	ecules in 6 gn	n of hyd	rogen at	NTPis
	(1)	2N	(2)	3N	(3)	N	(4)	N/6	,	
72.	The	mean trans	lational ki	netic e	nergy of a perfec	et gas mol	ecule at the te	emperat	ure T K	is
	(1)	$\frac{1}{2}kT$	(2)	kT	(3)	$\frac{3}{2}kT$	(4)	2kT		
						•	. 1.100			
73.	The	amount of	heat given	to a bo	ody which raises	its temper	rature by 1°C			
	(1)	water equi	ivalent		(2)	thermal	heat capacity		150	
	(3)	specific h	eat		(4)	tempera	ture gradient			
74.	Dur	ing an adial	hatic proce	ess, the	pressure of a ga	s is found	to be propor	tional to	o the cul	be of its
,	abso	lute tempe	rature. The	ratio	Cp/Cv for gas is					
	(1)	$\frac{3}{2}$	(2)	$\frac{4}{3}$	(3)	2	(4)	$\frac{5}{3}$::	
7.5	CI.				anialy yand to					
75.					nainly used to	10				
	(1)	_			nechanical stress	es		,	204	
	(2) to protect the fiber from corrosion									

(3) to protect the fiber from mechanical strength

(4) to protect the fiber from electromagnetic guidance

Set Code : [Booklet Code : [T2
Booklet Code :	A

CHEMISTRY

76.	The	valency electro	nic co	nfiguration of	Phospho	orous atom (At.N	lo. 15) is	
	(1)	$3s^2 3p^3$	(2)	3s1 3p3 3d1	(3)	$3s^2 3p^2 3d^1$	(4)	3s ¹ 3p ² 3d ²	
77.	An	element 'A' of A	t.No.12	2 combines wit	h an elei	ment 'B' of At.N	0.17.	The compound formed is	
	(1)		(2)			covalent AB ₂	(4)		
78.	The	number of neut	rons pi	resent in the at	om of	Ba ¹³⁷ is			
		56				193	·(4)	81	
79.	Hyd	lrogen bonding i	n wate	r molecule is	responsi	ble for		18 II	
	(1)	decrease in its	freezi	ng point	(2)	increase in its	degree	e of ionization	
	(3)	increase in its	boiling	point		decrease in its			
				-		6			
80.	In th	ne HCl molecule	, the be	onding betwee	n hydrog	gen and chlorine	is		
	(1)	purely covalen	t (2)	purely ionic	(3)	polar covalent	(4)	complex coordinate	
81.	Pota	assium metal and	l potas	sium ions		vi	40	191	
	(1)	both react with	water		(2)	have the same	numbe	er of protons	
	(3)	both react with	chlori	ne gas	(4)	have the same	electro	onic configuration	
82.	stand	dard flask. 10 ml	ofthis	solution were p	oipetted of tration of		lask ar oride	made upto 100 ml in a and made up with distilled solution now is 0.25 M	
						4			
83.		centration of a l							
	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N	
84.	Whi	ch of the follow	ing is a	Lewis acid?					
	(1)	Ammonia			(2)	Berylium chloride			
	(3)	Boron trifluori	de		(4)	Magnesium oxi	de		
					14-A				

					Set Code: T2	
					Booklet Code : A	
85.	Which of the following constitutes the com (1) Potassium chloride and potassium hyd (2) Sodium acetate and acetic acid (3) Magnesium sulphate and sulphuric acid (4) Calcium chloride and calcium acetate	droxid id		olution	?	
86.	Which of the following is an electrolyte? (1) Acetic acid (2) Glucose	(3)	Urea	(4)	Pyridine	
87.	$E^0 Cu/Cu^{+2} = (-) 0.34 V.$		//Cu ⁺² /Cu given (-) 0.78 V			d
88.		sed us	sing Platinum el Cl ₂ gas will be	ectrod libera	es. After electrolysis, ted at the cathode	
89.	Which of the following metals will undergo		ation fastest? Zinc	(4)	Iron	
90.	Which of the following cannot be used for (1) Ozone (3) Potassium Chloride		Calcium Oxyc	hlorid		
91.	A water sample showed it to contain 1.20 m terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm		e of magnesium 0.60 ppm		ite. Then, its hardness i	n
92.		(2)		ate de		,
93.	The process of cementation with zinc power (1) sherardizing (2) zincing	der is l	known as metal cladding	(4)	electroplating	

94.	Carr	osion of a metal is fastest in		
	(1)	rain-water (2) acidulated water	(3)	distilled water (4) de-ionised water
95.	Whi	ch of the following is a thermoset polyr	ner?	
	(1)	Polystyrene	(2)	PVC
	(3)	Polythene	(4)	Urea-formaldehyde resin
				7 ·
96.	Che	mically, neoprene is		
	(1)	polyvinyl benzene	(2)	polyacetylene
	(3)	polychloroprene	(4)	poly-1,3-butadiene
97.	Vul	canization involves heating of raw rubber	with	
	(1)	selenium element	(2)	elemental sulphur
	(3)	a mixture of Se and elemental sulphur	(4)	a mixture of selenium and sulphur dioxide
98.	Petr	ol largely contains		
	(1)	a mixture of unsaturated hydrocarbons	C ₅ -0	C ₈
	(2)	a mixture of benzene, toluene and xyle	ne	* , * *
	(3)	a mixture of saturated hydrocarbons C	12 - C	4
	(4)	a mixture of saturated hydrocarbons C	6 - C8	
99.	Whi	ch of the following gases is largely resp		
	(1)	SO ₂ & NO ₂		CO ₂ & water vapour
	(3)	CO ₂ &N ₂	(4)	N ₂ &CO ₂
100.	BOI	O stands for		
	(1)	Biogenetic Oxygen Demand	(2)	Biometric Oxygen Demand
	(3)	Biological Oxygen Demand	(4)	Biospecific Oxygen Demand

Set Code :	T2
Booklet Code :	A

MECHANICAL ENGINEERING

101.	A m	ortise gauge is a						
e	(1)	planning tool			(2)	striking tool		
	(3)	marking tool			(4)	boring tool	20	
102	A				1	· · · · · · · · · · · · · · · · · · ·		
102.		w which cuts wo		-				2. 2
	(1)	push saw	(2)	pull saw	(3)	rip saw	(4)	hand saw
102	τ		1					
103.		shaper, tool head	a cons	ist of	*	2		
	(1)	clapper box			(2)	work holding	g device	
	(3)	collet			(4)	four sided to	ol post	
104.		swing diameter le lathe.	over t	he bed is	t	he height of th	e centre	measured from the bed
- 6	(1)	equal to			(2)	one and half	times	
	(3)	twice		20	(4)	thrice		
								45
105.	The	rake angle requi	red to	machine bras	s by HSS	tool is		
	(1)	0°	(2)	-10°	(3)	20°	(4)	-10°
106.	The	binding material	used	in cemented o	arbide to	ol is		*
	(1)	tungsten	(2)	chromium	(3)	silicon	(4)	cobalt
			28		*			
07.		relation between e of n depends up		life(T) and cu	tting spe	ed (V) is VT ⁿ	= const	ant. In this relation, the
	(1)	work material			(2)	working cond	ditions	
6	(3)	tool material		*	(4)	type of chip p	oroduce	i
		(4)						
					17-A			· (MEC)

Set Code :	T2
Booklet Code :	A

	00	TI	1 1 00							
1	08.		usual value of the						******	
		(1)	60°	(2)	80°	(3)	112°	(4)	118°	
		~					8			
1	09.		ling is an examp					DEI		
		(1)	Orthogonal cut			(2)	Oblique cuttin			
		(3)	Simple cutting			(4)	Uniform cutting	ng		
								*		
1	10.	The	top and sides of	the tal	ole of a shaper t	usually	have	4		
		(1)	I-type slots	(2)	L-type slots	(3)	T-type slots	(4)	H-type slots	
1	11.	In la	pping operation	, the a	mount of thicks	ness of	metal removed	is		
		(1)	0.005 to 0.01 i	nm		(2)	0.01 to 0.1 mr	n		
	•	(3)	0.05 to 0.1 mm	ı		(4)	0.5 to 1 mm			
							•			
1	12.		process of remo	oving 1	netal by a cutt	er whic	h is rotated in t	he san	ne direction of t	ravel of
		(1)	up milling	(2)	down milling	(3)	face milling	(4)	end milling	
11	13.	CNC	drilling machin	ne is co	onsidered to be					3
		(1)	P.T.P controlled	d mack	nine ·	(2)	Continuous pa	th con	trolled machine	
		(3)	Servo controlle	d mac	hine	(4)	Adaptive contr	rolled 1	machine	
11	4.	Sean	n welding is best	adopt	ed for metal th	ickness	ranging from			
		(1)	0.025 to 3 mm	(2)	3 to 5 mm	(3)	5 to 8 mm	(4)	8 to 10 mm	
		` .*				, ,				
11	5.	In we	elding, flux is us	ed to			6		. 9	
		(1)	improve meltin		t of metal	(2)	obtain high ten	nperati	ure	
		(3)	mix the metal a	• •		(4)		•	from atmosphe	rė
		."		Jonat		(.)	F			
						18-A		3		(MEC)
						10-11				(mile)

Set Code:	T2
Booklet Code :	A

116.	Acet	elyne in gas weld	ling p	rocess is obtain	ed from	m				
	(1)	calcium carbona	ate		(2)	potassium carbonate				
	(3)	potassium carbi	de		(4)	calcium carbide				
117.	The	electron beam we	elding	can be carried	out in					
	(1)	a shielded gas er	nviror	nment	(2)	open air				
	(3)	vacuum			(4)	a pressurized inert gas chamber				
					*					
118.	Follo	owing is the fusio	n typ	e welding proce	ess					
	(1)	submerged are v	veldi	ng process	(2)	explosive welding process				
	(3)	friction welding	proc	ess	(4)	diffusion welding process				
				*		*				
119.	In h	ot machining tool	is ma	ade of						
	(1)	tungsten carbide	2		(2)	brass				
14	(3)	diamond		E. 1	(4)	stainless steel				
		1.00					4			
120.	The	increase in hardn	ess d	ue to cold work	ing is c	called				
	(1)	age hardening			(2)	induction hardening				
	(3)	work hardening			(4)	flame hardening	i.			
						5 8				
121.	In di	e casting, machin	ning a	llowance is						
	(1)	small	(2)	large	(3)	very large (4) not provid	led			
	15									
122.	The	draft allowance of	on cas	ting is generally	У					
	(1)	1 to 2 cm/m	(2)	2 to 5 cm/m	(3)	5 to 10 cm/m (4) 10 to 15 c	m/m			
					14					
123.		asting defect whi	ch oc	curs near the in	ngates	as rough lumps on the surface of	a casting is			
	(1)	shift	(2)	sand wash	(3)	swell (4) scab				
	. /				19-A		(MEC)			

Set Code :	T2
Booklet Code :	A

124.	In sa	and moulding process, cores are used to		
	(1)	directional solidification	(2)	filling the cavities with molten metal
	(3)	to create the cavity in the casting	(4)	to minimize wastage of metal
125.	The	symbol used for butt resistance weld is		
	(1)	○ (2)	(3)	
126.	The	roughness grade symbol for the roughn	ess va	alue of 6.3 micrometers is
	(1)	N 9 (2) N 10	(3)	N 11 (4) N 12
127.	The	sand used for making cores is		
	(1)	green sand	(2)	dry sand ,
4	(3)	loam sand	(4)	oil sand •
128.	Stee	l balls for ball bearings are generally m	ade of	f .
	(1)	stainless steel	(2)	nodular cast iron
	(3)	free carbon steel	(4)	carbon chrome steel
129.	The	shock resistance of steel is increased by	addi a	ng .
		nickel	(2)	chromium
	(3)	cobalt and molybdenum	(4)	nickel and chromium
130	The	force that cancels the effect of the force	e syste	em acting on the body is known as
150.	(1)	resultant	(2)	equilibrant
	(3)	neutral force	(4)	
131.	In th	e method of joints for the analysis of librium equations, which are available a	forces	s in the members of the truss, the number of
	(1)	/e> -	(3)	4 (4) 5
	(1)		0-A	(MEC)

Set Code :	T2
Booklet Code :	A

132.		point in the stress is decreasing is c		is strain diagra	m at wh	ich the cross sec	ztionai a	irea of the test	specimen
	(1)	elastic limit			(2)	upper yield po	oint		
	(3)	lower yield poin	nt 🔩	ē	(4)	ultimate stress	s point	5 e	
133.	bear	mply supported be n of the same din as t	nensi	ons carries a ce	readth b	and depth d ca	rries a o The de	central load W eflection of bea	Another m B will
	(1)	one fourth	(2)	half	(3)	double	(4)	four times	
134.	The	percentage elong	gation	s for a ductile	material	are usually			
	(1)	less than 5%	(2)	5 to 10%	(3)	10 to 15%	(4)	more than 15	%
135.	Ina	strained material	subie	ected to two no	ormal str	esses, the maxi	mum sl	hear stress is e	qual to
		sum of the norr				difference of		174	p. ■ Sc., con t personners
		half the sum of			67	half the differ			resses
	` '				4				
136.		strain energy sto n same load is ap			sudden	ly loaded is	1	he strain ener	gy stored
		half	7	equal to	(3)	twice	(4)	four times	
		*11							
137.		owder metallurgy			ires to w	hich powdered	l metals	s in desired pro	oportions
	are c	compressed in no	ulds i	s					
	(1)	10 to 50 bar		19	. (2)	50 to 300 bar			
	(3)	310 to 650 bar			(4)	690 to 13750	bar		
138.	The	velocity of the be	elt of r	nass 'm' and to	ension "	Γ', for maximu	m powe	ris	
	(1)	T/3	(2)	Tx3	(3)	$\sqrt{T}/3m$	(4)	$\sqrt{(3m/T)}$	100
			•				10		
					21-A				(MEC)

Set Code :	T2
Booklet Code :	A

139	. The	included angle for the V-belt is usual	ly	2	
	(1)	10 to 20°	(2)	20 to 30°	
	(3)	30 to 40°	(4)	50 to 60°	
140	. Wh	en the belt is stationary, it is subjected tension is equal to the	to som	e tension known as	initial tension. The value o
	(1)	tension in the tight side of the belt	*	· ·	9
	(2)	tension in the slack side of the belt			a!
	(3)	sum of the tensions on the tight side	and sl	ack side of the belt	or.
	(4)	average tension of the tight and slac			
141	. The	relation between the pitch of the chan by	in (p) a	nd pitch circle dian	neter of the sprocket (D) is
	(1)	$p = D \sin (90^{\circ}/T)$	(2)	$p = D \sin (120^{\circ}/T)$,
	(3)	$p = D \sin (180^{\circ}/T)$	(4)	$p = D \sin (360^{\circ}/T)$)
142	. In ro	oller chain the roller diameter is appre	oximate	ely	of the pitch.
	(1)	5/8 (2) 6/8	(3)		4) same as that
142	1171				
143.		en spring index increases, the value of			
	(1)	increases linearly	(2)	decreases linearly	
	(3)	remains same	(4)	increases exponen	tially
		*			
44.	Whe	n two non intersecting and non-copla vn as	nar sha	fts are connected by	gears, the arrangement is
	(1)	spur gearing	(2)	helical gearing	
	(3)	bevel gearing	(4)	spiral gearing	9
		55	22-A		(MEC)

Set Code :	T2
Booklet Code :	A

145.	Pitcl	point of a cam	is						
	(1)	a point on the pi	tch cı	ırve having m	inimum p	oressure angle			
	(2)	a point on the pi	tch cı	rve having m	aximum j	pressure angle		16.	
	(3)	any point on the	pitch	curve		. *			
	(4)	any point on the	pitcl	n circle				s. 20	
146.	The	ratio of hoop stre	ess to	longitudinal s	stress is	et en			
	(1)	0.5	(2)	1	(3)	2	(4)	3	
147.	inne		n and	both of them	are made			er diameter 100 m ne torque transmit	
	(1)	1/8	(2)	1/6	(3)	13/12	(4)	15/16	
								79	
148.	Stea	dy flow energy e	quatio	on for a compi	ressor is				
	(1)	$\mathbf{w} = \mathbf{h}_2 - \mathbf{h}_1$	(2)	$\mathbf{w} = \mathbf{h}_1 - \mathbf{h}_2$	(3)	$Q = h_1 - h_2$	(4)	$h_1 = h_2$	
149.	Worl	k done in a flow	proce	ss is					
	(1)	pv	(2)	$\int pdv$	(3)	∫vdp	(4)	$-\int vdp$	
150.	The	hyperbolic proce	ss is g	governed by				8	
	(1)	Boyle's law	(2)	Charles' law	(3)	Avogadro's law	(4)	Gay-Lussac law	
151	Reve	ersed Joule cycle	is kn	own as					
	(1)				(2)	Carnot cycle			
		Bell-Coleman c	ycle		(4)	1604 1604 1604 1604 1604 1604 1604 1604			

(MEC)

Set Code :	T2
Booklet Code :	

134	cycl	es is	and c	ompression rat	io, tiic	order of efficie	ncy o	Otto, Diese	i anu Duai
	(1)	$\eta_{Otto} > \eta_{Diesel} > \gamma$	1_{Dual}	*	(2)	$\eta_{Otto} > \eta_{Dual} > \gamma$	Diesel		
	(3)	$\eta_{Diesel} > \eta_{Dual} > 1$	Otto		(4)	$\eta_{Dual} > \eta_{Otto} > \tau$:	
153.	The	condition for an	irreve	ersible cycle is				(*) 32	
	(1)	$\delta(\delta q/T)=0$	(2)	$\delta(\delta q/T) < 0$	(3)	$\delta(\delta q/T) > 0$	(4)	$\delta(\delta q/T) = \infty$)
154.	The	isentropic proce	ss me	ans					
	(1)	reversible proc	ess		(2)	adiabatic proce	ess		
	(3)	reversible adial	oatic p	rocess	(4)	constant entro	py pro	cess	
									,
155.	Duri	ng throttling pro	cess in	n an expansion v	valve o	f a refrigerator			
	(1)	enthalpy remain	is con	stant but pressu	re deci	reases		79.5	
	(2)	pressure remain	is con	stant but enthal	py deci	reases			
	(3)	constant enthal	py pro	cess					
	(4)	both pressure ar	nd ent	halpy remains c	onstan	t .	ŷ.		
				100	V				
156.		ixture of gas in ess. The change					ing 10	0 kJ of heat	during the
	000000000000000000000000000000000000000	0 kJ		5 kJ	(3)	100 kJ	(4)	2000 kJ	
	(-)		(2)	, 10	(5)	700 10	(')	2000 10	12
157.	The	effective inhibite	or of p	re-ignition is		7			
	(1)	alcohol	(2)	water	(3)	lead	(4)	diesel	
							10 10 10	125	
158.	In the	e expression of b	rake p	ower BP = $(2\pi n)$	T/60),	for a four stroke	engin	e 'n' should b	e taken as
	(1)	•	(2)		(3)	2N	_	N/4	
	wher	e, N = speed of t			. ,				
								85	MEC
					24-A				(MEC)

							Set Code Booklet Code	
							Booklet Code	· A
159.	Hyd	rocarbon fuels of Paraffin family are	e being	g us	ed in S.I. engine	es, due	e to	
	(1)	high cetane number	(2		high octane nur		0	
	(3)	high heating value	(4)	high specific he	eat		
		8						
160.	The	flow ratio in case of Francis turbine	varies	fro	om			
	(1)	0.15 to 0.3 (2) 0.4 to 0.5	. (3)	0.6 to 0.9	(4)	1 to 1.5	
	10							
161.		ratio of the normal force of jet of wa when the plate is normal to jet, is	ter on a	a p	late inclined at a	n ang	le of 60° as con	npared to
	(1)	1 (2) $\sqrt{3}/2$	(3)	1/2	(4)	0	
		*						
162.	In al	l reaction turbines, for maximum ef	ficienc	у		y.		
	(1)	the velocity of flow at outlet must	be zero	0				
	(2)	the velocity of flow at inlet must b	e zero		20.5			
	(3)	the velocity of whirl at entrance m	ust be	zer	o ·	. *		
	(4)	the velocity of whirl at outlet must	be zer	ro			2.	
-								
163.	Cen	rifugal pumps dealing with mud hav						
	(1)	open	(2	2)	double suction			
	(3)	one-side shrouded	. (4	()	two-sides shrow	ıded	10	
164.	Spec	cific speed of impulse turbine range						
	(1)	1000 to 2000 (2) 300 to 1000) (3	()	60 to 300	(4)	10 to 50	
					5a 0.50			
165.	Hyd	raulic ram is a pump which works or	n the p	rin		2		
	(1)	centrifugal action	(2		reciprocating a			
	(3)	positive displacement action	(4	1)	inertia forces o	f wate	er in the supply	line
					*			
			25-A			40		(MEC)

25-A

				w.	2			Set Code : T2
								Booklet Code : A
166	Snat	e Ignition engine	work	s on				
100.	(1)	Diesel cycle		Otto cycle	(3)	Dual cycle	(4)	Ericssion cycle
	(1)	Dieser cycle	(2)	Ono cycle	(3)	Duai Cycle	(+)	Eriession cycle
167.	Whi	le drawing a hydr	aulic	or pneumatic ci	rcuit,	it must begin wi	ith	and end with
	(1)	pump, actuator		25	(2)	filter, flow con	ntrol va	lve
	(3)	pressure gauge,	press	ure control valv	e (4)	service units,	signali	ng elements
168.	The	pressure lines in	the w	et region of Mo	llier c	hart are straight	becaus	se
	(1)	pressure remain	s con	stant	(2)	volume remain	ns cons	tant
	(3)	temperature rem	nains	constant	(4)	enthalpy rema	ins con	stant
169.	A sa	fety valve mainly	used	with locomotive	e and i			2
	(1)	lever safety valv	e		(2)	dead weight sa	fety va	lve
	(3)	high steam and l	ow w	ater safety valve	(4)	spring loaded	safety v	valve
			10					
170.	In or taker		e cap	acity of boilers,	the fee	ed water temper	ature a	nd working pressure are
	(1)	100°C and norm	al atr	nospheric press	ure			
	(2)	100°C and 1.1 b	ar					
	(3)	50°C and norma	l atm	ospheric pressu	re			
	(4)	50°C and 1 bar p	oressu	ire	•	*		
						*		
171.	The	Mach number of:	steam	flow at exit to a	conv	ergent divergen	t nozzle	e should be
	(1)			less than 1		more than 1		
		n the back pressu le is said to be	re of a	nozzle is belov	v the d	esigned value o	f pressi	ure at exit of nozzle, the
9.	(1)	under expanding		10	(2)	over expanding	g	
	(3)	choked		20	(4)	super saturated	i	1 4

(MEC)

Set Code :	T2
Booklet Code :	A

173.		available enthalpy drop in a supersatu librium flow	ırat	ted flo	ow of steam throu	gh a n	ozzle as compa	red to an
	(1)	remains same		(2)	increases			
	(3)	decreases		(4)	unpredictable			
							*	
174.	The	Parson's reaction turbine has						
	(1)	only moving blades					;	
	(2)	only fixed blades						
	(3)	different shapes of fixed and movin	gŀ	lades				
	(4)	identical shape of fixed and moving	bl	ades				
		a great			¥ 19			14
175.		isentropic enthalpy drop in moving es of a turbine. The degree of reactio				tropic	enthalpy drop	in fixed
	(1)	0.4 (2) 0.56		(3)	0.67	(4)	1.67	
176.	The	cooling system used for supersonic	air	crafts	s and rockets is		F	2.00
	(1)	simple air cooling system			boot-strap air c	ooling	g system	
	(3)	reduced ambient air cooling system	1	(4)	regenerative air	cooli	ing system	
177.	The	capacity of a domestic refrigerator is	s ir	the r	ange of			
	(1)	0.1 to 0.3 T		(2)	0.5 to 1.0 T			
	(3)	1 to 3 T		(4)	3 to 5 T			
	,				*			
178.	The	capillary tube is not used in large cap	oac	ity re	frigeration system	ms be	cause	
		It is made of copper		-				197
		Capacity control is not possible			<i>ii</i>			
	(3)	required pressure drop cannot be ac	hie	eved				
	(4)	cost is too high						
	(.)	2001 10 100 11181						
							121	(MEC)
			2	7-A		740		(MEC)

179.		qua-ammonia and lithiu respectively	m bromide - wate	r abs	orption refrigera	ation s	systems, the ref	frigerants
	(1)	water and water		(2)	water and lithiu	m bro	omide	
	(3)	ammonia and lithium b	oromide ((4)	ammonia and w	ater	2	
		yl.						
180.	Que	uing theory is associated	d with					
. '	(1)	inventory (2)	sales ((3)	waiting time	(4)	production ti	me
181.	The	routing function in a pro	oduction system d	lesig	n is concerned w	vith		
	(1)	manpower utilization	((2)	machine utilizat	tion		也
	(3)	quality assurance of the	e product ((4)	optimizing mate	erial f	low through th	e plant
		value engineering tech	nique in which	expe	erts of the same	rank	assemble for	product
	(1)	brain storming	(2)	Delphi	•	6 /4	
	(3)	morphological analysis	s (4)	direct expert co	mpar	ison	
183.	The	type of organization pre	ferred for an auto	mob	ile industry			
	(1)	line organization	. (2)	functional organ	nizatio	on	
	(3)	line and staff organizat	ion (4)	line, staff and fu	nctio	nal organizatio	n
184.		mathematical technique mum manner is known a	The second secon	est i	use of limited re	sourc	es of a compa	ny in the
	(1)	value analysis	(2)	network analysis	S		
	(3)	queuing theory	(4)	linear programm	ning	¥	
185.		small scale industry the 0/- and sales price is Rs						
	(1)			3)		(4)	1000	
		*	28-A					(MEC)

							Set Cod Booklet Cod	
								ئت
186.		cards are used in						
	(1)	machine loading (2) quality	control	(3)	stores	(4)	inventory	
187.		chart which gives an estimate alons is known as	oout the a	mou	nt of materials l	nandlin	g between var	ious work
	(1).	flow chart (2) process	chart	(3)	travel chart	(4)	operation ch	art
188.	The	type of layout suitable for manu	ıfacturin	g tool	s and gauges			
	(1)			4	(2) process	layout		Q.
	(3)	combination of product and p	rocess la	yout	(4) fixed po	sition 1	layout	
	•							ć.
189.	The	forecasting technique used for	new prod	ducts	is		180	
	(1)	Box Jenkins		(2)	Single expone	ential sr	noothing	
	(3)	Delphi type	25 g	(4)	simple regres	sion		
100	α.				¥ , K			
190.		sigma level of quality control m		(2)	2.4 defeats no		on opportuniti	ec
	, ,	2.1 defects per million oppor			3.4 defects pe			
	(3)	4.3 defects per million oppor	tunities	(4)	5.7 defects pe	r milli	on opportunit	CS
8.0	700 700		•					
191.		ventory control theory, the eco	nomic of					
	(1)	average level of inventory		(2)			a to brook ove	n analysis
	(3)	capacity of a warehouse		(4)	lot size corres	pondin	g to break-eve	ii ailaiysis
		single dry plate clutch, torsiona				(4)	المام المام المام	#5
	(1)	coil springs (2) cushion	springs	(3)	central hub	(4)	clutch pedal	
			4 - 4	o f o -	. tomavo			
193.		torque converter uses	to tra				on fluid	
	(1)	air		, ,	automatic trai	131111331	on muid	6
	(3)	gears	New York		steel belt			(MEC)
			2	9-A				(MEC)

				Set Code: T2	
				Booklet Code : A	
194.	Ina	four wheel drive, the number of gear	boxes a	are	
	(1)	1 (2) 2	(3)	3 (4) 4	
195.	. In a hydraulic power steering system, the power steering pump is driven by a				
	(1)	belt driven by camshaft	(2)	chain driven by crankshaft	
	(3)	belt driven by driveshaft	(4)	belt driven by crankshaft	
196.	Whi	ch of the following parameter can be	adjuste	d by modifying the tie-rod attachment length?	
	(1)	camber (2) caster	(3)	toe (4) steering gear ratio	
197.	The	gudgeon pin connects			
	(1)	crankshaft and connecting rod	(2)	connecting rod and piston	
	(3)	connecting rod and cam shaft	(4)	piston and crank shaft	
198.	The function of antilock brake system is that it				
	(1)	reduces the stopping distance			
	(2)	minimizes the brake fade			
	(3)	maintains directional control during	g braking	g by preventing the wheels from locking	
	(4)	prevents nose dives during braking	and ther	re by postpones locking of the wheels	
199.	Odometer is an instrument used for measurement of				
	(1)	power	(2)	fuel consumption	
	(3)	engine rpm	(4)	distance	
200.	The problem caused by the wheel imbalance is				
	(1)	hard steering and hard ride			
	(2)	poor acceleration and hard steering			
	(3)	steering wheel vibrations and uneve		vear	
	(4)	1 2 2 2 2 2			
		900	30-A	(MEC)	