Note: (1) Answer all questions.

(2) Each question carries 1 mark. There are no negative marks.

(3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.

(MET)

METALLURGICAL ENGINEERING INSTRUCTIONS TO CANDIDATES

Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on
the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING,
THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE
HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE
SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.

2. Immediately on opening this Question Paper Booklet, check:

- (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
- (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.

Use of Calculators, Mathematical Tables and Log books is not permitted.

- 4. Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.

8. The OMR Response Sheet will not be valued if the candidate:

- (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
- (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.

(c) Adopts any other malpractice.

- 9. Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.

11. Timings of Test: 10.00 A.M. to 1.00 P.M.

- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.

14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

Note: (1) Answer all questions.

(2) Each question carries 1 mark. There are no negative marks.

If $A+B+C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$

- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.

MATHEMATICS

	(1) 4 cosA sinB cos	C		(2)	4 sinA cosB sin	C					
	(3) 4 cosA cosB co	sC		(4)	4 sinA sinB sin	С					
2.	The principal solution	n of I	Tanx = 0 is								
	(1) $x = n\pi, n \in \mathbb{Z}$			(2)	x=0						
	(3) $x=(2n+1) \pi/2$, n	ı∈Z		(4)	$x = n\pi + \alpha, n \in \mathbb{Z}$						
3.	The value of $Tan^{-1}(2) + Tan^{-1}(3)$ is										
	$(1) \frac{\pi}{4}$	(2)	$\frac{\pi}{2}$	(3)	$\frac{\pi}{3}$	(4)	$\frac{3\pi}{4}$				
4.	If the sides of a right angle triangle are in A.P., then the ratio of its sides is										
	(1) 1:2:3	(2)	2:3:4	(3)	3:4:5	(4)	4:5:6				
5.	The value of $r.r_1.r_2.r_3$	is									
	(1) Δ^2	(2)	Δ^{-2}	(3)	Δ-3	(4)	Δ^4				
6.	$\frac{1}{r1} + \frac{1}{r2} + \frac{1}{r3} =$										
	$(1) \frac{1}{r}$	(2)	$\frac{1}{2r}$	(3)	$\frac{1}{R}$	(4)	$\frac{1}{\Delta}$				

~	TC (1 C	0 4	41 1 C 1 . A	:-
/	If a=6, b=3	c=9, then	the value of angle A	IS
	114 0,0 0,	C , uivii	the funde of displant	

- (1) $\cos^{-1}(2/9)$ (2) $\cos^{-1}(2/5)$ (3) $\cos^{-1}(7/9)$ (4) $\cos^{-1}(1/3)$

The polar form of complex number 1-i is 8.

- (1) $\sqrt{2}e^{-i\pi/4}$ (2) $\sqrt{2}e^{i\pi/4}$ (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$

9. If
$$1, \omega, \omega^2$$
 be the cube roots of unity, then the value of $2^{\omega^3}.2^{\omega^5}.2^{\omega}$ is

- (2) ω^2
- (3) 1

10. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2-c}$ (2) $\sqrt{f^2-c}$ (3) $2\sqrt{g^2-c}$ (4) $2\sqrt{f^2-c}$

11. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is $(2, 7)$, then the other end of the diameter is

- (1) (3, 1)

- (2) (1,3) (3) (-3,-1) (4) (-1,-3)

12. The radius of the circle
$$\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$$
 is

- (1) 2c
- (2) 4c
- (3) c/2 (4) c

13. The parametric equations of the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 are

- (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta, y = a \cos\theta$
- (3) $x = a \cos\theta, y = b \sin\theta$
- (4) $x = a \csc\theta$, $y = b \cot\theta$

14. The equation of the directrix of the parabola
$$2x^2 = -7y$$
 is

- (1) 8y+7=0
- (2) 8y-7=0
- (3) 7y+8=0
- (4) 8x-7=0

15. The condition for a straight line
$$y = mx + c$$
 to be a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

- (1) c = a/m
- (2) $c^2 = a^2m^2 b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

16.
$$Lt_{x\to 1} \frac{\sqrt{5x-4} - \sqrt{x}}{x-1}$$
 is

- (1) 3
- (2) 2

17.
$$\log i =$$
(1) $\pi/2$ (2) $\pi/4$

18.
$$\frac{d}{dx}[\log_7 X] =$$

- (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_7^e$ (4) $\frac{1}{x} \log_7^e$

$$19. \quad \frac{d}{dx}[2\cosh x] =$$

- (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

$$20. \quad \frac{d}{dx} \left[\cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right] =$$

- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$

21. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$

- (1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$ (4) $\sqrt{\frac{x}{y}}$

22. The derivative of e^x with respect to \sqrt{x} is

- (1) $\frac{2\sqrt{x}}{e^x}$ (2) $2\sqrt{x}e^x$ (3) $\frac{e^x}{2\sqrt{x}}$ (4) $\sqrt{x}e^x$

Set Code: T2

Booklet Code: B

23. The equation of the normal to the curve $y = 5x^4$ at the point (1, 5) is

(1)
$$x + 20y = 99$$

(2)
$$x + 20y = 101$$

(3)
$$x - 20y = 99$$

(1)
$$x + 20y = 99$$
 (2) $x + 20y = 101$ (3) $x - 20y = 99$ (4) $x - 20y = 101$

24. The angle between the curves $y^2 = 4x$ and $x^2 + y^2 = 5$ is

$$(1) \quad \frac{\pi}{4}$$

(1)
$$\frac{\pi}{4}$$
 (2) $\tan^{-1}(2)$ (3) $\tan^{-1}(3)$ (4) $\tan^{-1}(4)$

(3)
$$tan^{-1}(3)$$

(4)
$$tan^{-1}(4)$$

25. If $u = x^3y^3$ then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$

(1)
$$6(x^3+y^3)$$
 (2) $6x^3y^3$ (3) $6x^3$ (4) $6y^3$

(2)
$$6 x^3 y^3$$

$$(3)$$
 $6x$

$$(4) 6y^3$$

26. $\int \csc x \, dx =$

(1)
$$\log(\csc x + \cot x) + C$$

(2)
$$\log(\cot x/2) + C$$

(3)
$$\log (\tan x/2) + C$$

(4)
$$-\csc x \cdot \cot x + C$$

27. $\int_0^{\frac{\pi}{2}} \cos^{11} x \, dx =$

(1)
$$\frac{256}{693}$$

(1)
$$\frac{256}{693}$$
 (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$ (4) $\frac{128}{693}$

$$(3) \quad \frac{\pi}{4}$$

(4)
$$\frac{128}{693}$$

28. $\int f^{1}(x) \cdot [f(x)]^{n} dx =$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$

(3)
$$n[f(x)]^{n-1} + C$$

4)
$$(n+1)[f(x)]^{n+1} + C$$

29. $\int \frac{dx}{(x+7)\sqrt{x+6}} =$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$
 (2) $2Tan^{-1}(\sqrt{x+6})+C$

(3)
$$Tan^{-1}(x+7)+C$$

(3)
$$Tan^{-1}(x+7)+C$$
 (4) $2Tan^{-1}(x+7)+C$

Set Code:

Booklet Code:

- $30. \quad \int \tan^{-1} x \, dx =$
 - (1) $x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$
- (2) $\frac{1}{1+x^2}+C$
- (3) $x^2 . Tan^{-1}x + C$

(4) $x.Tan^{-1}x - \log \sqrt{1+x^2} + C$

- 31. $\int \frac{dx}{1+e^{-x}} =$
 - (1) $\log(1+e^{-x})+C$

(3) $e^{-x} + C$

- $32. \quad \int_{-\pi}^{\frac{\pi}{2}} \sin|x| \, dx =$
 - (1) 0
- (2) 1

- 33. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- The order of $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (3) 3

- 35. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{3}{2}} = a \frac{d^2 y}{dx^2}$ is
- (3) 1
- (4) 3
- 36. The family of straight lines passing through the origin is represented by the differential equation
 - (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0

- 37. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + by + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- 38. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $y e^{-x^2} = x + c$ (2) $y e^x = x + c$ (3) $y e^{x^2} = x + c$ (4) y = x + c

- 39. The complementary function of $(D^3+D^2+D+1)y = 10$ is

 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$ (2) $C_1 \cos x + C_2 \sin x + C_3 e^{x}$ (3) $C_1 + C_2 \cos x + C_3 \sin x$ (4) $(C_1 + C_2 x + C_3 x^2) e^{x}$
- 40. Particular Integral of $(D-1)^4y = e^x$ is
 - (1) $x^4 e^x$

- (2) $\frac{x^4}{24}e^{-x}$ (3) $\frac{x^4}{12}e^x$ (4) $\frac{x^4}{24}e^x$
- 41. If $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, then $A^4 =$
 - (1) 3I
- (2) 91
- (3) 271
- 42. If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x is
 - (1) 1
- (2) 2
- (3) 3
- 43. What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3
 - (1) 64

- (3) 512 (4) 256

44. If
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then $|A| =$

- (1) 1
- (2) 2
- (3) 3
- 45. The solution of a system of linear equations 2x y + 3z = 9, x + y + z = 6, x y + z = 2 is
 - (1) x = -1, y = -2, z = -3(2) x = 3, y = 2, z = 1(3) x = 2, y = 1, z = 3(4) x = 1, y = 2, z = 3
- (2) x = 3, y = 2, z = 1
 - (3) x = 2, y = 1, z = 3

46. If
$$\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x - ai}$$
 then A = _____, B = _____.

- (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

47. If
$$\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$$
 then $\sum_{i=1}^3 A_i$ is equal to

- (1) A,
- (2) 2A,
- (3) 4A,
- (4) 4A₁

- 48. The period of the function $f(x) = |\sin x|$ is
 - (1) π
- (2) 2π
- (3) 3π

- 49. If A+B=45°, then (1-cotA). (1-cotB) is
- (2) 0
- (3) 2
- (4) -1

- 50. The value of sin 78° + cos 132° is

- (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$

PHYSICS

51.	The linear momentum of a p	particle varies with time t as $p = a+bt+ct^2$ which of the	following is
	correct?		

- (1) Force varies with time in a quadratic manner.
- (2) Force is time-dependent.
- (3) The velocity of the particle is proportional to time.
- (4) The displacement of the particle is proportional to t.

52.	A shell of mass m moving with a velocity v suddenly explodes into two	pieces. One pa	rt of mass
	m/4 remains stationary. The velocity of the other part is		

- (1) v
- (2) 2v
- (3) 3v/4

53. The velocity of a freely falling body after 2s is

- (1) 9.8 ms⁻¹
- (2) 10.2 ms⁻¹
- (3) 18.6 ms⁻¹
- (4) 19.6 ms⁻¹

54. A large number of bullets are fired in all directions with the same speed u. The maximum area on the ground on which these bullets will spread is

- (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ (4) $\frac{\pi u}{g^4}$

The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is μ, will be

- $(2) \quad \frac{v^2}{\mu g}$
- $(3) \quad \frac{v^2}{4\mu g} \qquad \qquad (4) \quad \frac{v}{2\mu g}$

56. When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts

- (1) In the backward direction on the front wheel and in the forward direction on the rear wheel
- (2) In the forward direction on the front wheel and in the backward direction on the rear wheel
- (3) In the backward direction on both the front and the rear wheels
- (4) In the forward direction on both the front and the rear wheels

								Set C	oae :	12	
								Booklet Co	ode :	B	
57.	In a	perfectly inelast	ic col	lision, the tv	vo bodies		2				
-	(1)	strike and explo	ode		(2)	explo	de without stril	cing			
	(3)	implode and ex	plode		(4)	combi	ne and move to	ogether			
58.	Und pow	er the action of a	cons	tant force, a	particle is	experie	ncing a consta	nt accelerati	on, ther	ı the	
	(1)	zero			(2)	positiv	/e	2	¥		
	(3)	negative		***	(4)	increa	sing uniformly	with time		-	
59.	Con	sider the followi	ng tw	o statements	:				,		
	A: Linear momentum of a system of particles is zero.										
	B:	Kinetic energy		100 miles	177						
	Then			, P		1 1					
	(1) A implies B & B implies A										
		21 A			imply A	e ^t					
	(2)	A does not imp	· ·				10 or				
	(3)	A implies B but			-0.104			*			
•	(4)	A does not imp	ly B b	ut B implies	A		F				
60	A		10 1.33	<i>t</i> . C			.!!! !* 4! 4 1!	o c	200 1		
60.		engine develops ht of 40 m? (Giv			How muc	n time w	ill it take to li	it a mass of	200 kg	to a	
	(1)	4s	(2)	5s	(3)	8s	(4)	10s		2.0	
61.	Ifas	pring has time p	eriod '	T, and is cut	into n equ	al parts,	then the time	period will b	e		
×	(1)	$T\sqrt{n}$	(2)	$\frac{\mathrm{T}}{\sqrt{n}}$	(3)	nТ	(4)	T			
62.	Whe	n temperature in	crease	es, the freque	ency of a t	uning fo	ork				
Z.0005750	(1)	increases				-0	sarol M	:			
	(2)	decreases	v								
	(3)	remains same	-	5.							
	(4)	increases or dec	crease	s depending	on the ma	terials					

11-B

63.	Ifa	If a simple harmonic motion is represented by $\frac{d^2x}{dy^2} + \alpha x = 0$, its time period is									
	(1)	$2\pi\sqrt{\alpha}$	(2)	2πα	(3)	$\frac{2\pi}{\sqrt{\alpha}}$	(4)	$\frac{2\pi}{\alpha}$		12	
64.		inema hall has v total absorption				red to have rev	erberat	ion time	of 1.5 sec	conds.	
	(1)	850 w-m ²		*11	(2)	82.50 w-m ²	10	•			
	(3)	8.250 w-m ²			(4)	0.825 w-m^2			¥ =		
	. ,								£ 14		
65.	To a	bsorb the sound	in a ha	ll which of	the following	ing are used					
	(1)	Glasses, store	s		(2)	Carpets, curta	ains				
	(3)	Polished surfa	ices		(4)	Platforms		1.	*		
		10		1. 3		N/					

66. If N represents avagadro's number, then the number of molecules in 6 gm of hydrogen at NTP is

(1) 2N (2) 3N (3) N (4) N/6

- 67. The mean translational kinetic energy of a perfect gas molecule at the temperature T K is
 - (1) $\frac{1}{2}kT$ (2) kT
- $(3) \quad \frac{3}{2}kT$

(4) 2kT.

68. The amount of heat given to a body which raises its temperature by 1°C

(1) water equivalent

(2) thermal heat capacity

(3) specific heat

(4) temperature gradient

69. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for gas is

- $(1)^{-\frac{3}{2}}$
- (2) $\frac{4}{3}$
- (3) 2
- (4) $\frac{5}{3}$

- 70. Cladding in the optical fiber is mainly used to
 - (1) to protect the fiber from mechanical stresses
 - (2) to protect the fiber from corrosion
 - (3) to protect the fiber from mechanical strength
 - (4) to protect the fiber from electromagnetic guidance
- 71. Two quantities A and B are related by the relation A/B = m where m is linear mass density and A is force. The dimensions of B will be
 - (1) same as that of latent heat
 - (2) same as that of pressure
 - (3) same as that of work
 - (4) same as that of momentum
- 72. The dimensional formula of capacitance in terms of M, L, T and I is
 - (1) $[ML^2T^2I^2]$
- (2) $[ML^{-2}T^4I^2]$
- (3) $[M^{-1}L^3T^3I]$
- (4) $[M^{-1}L^{-2}T^4I^2]$
- 73. If l, m and n are the direction cosines of a vector, then

 - (1) l+m+n=1 (2) $l^2+m^2+n^2=1$ (3) $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}=1$ (4) lmn=1

- 74. The angle between i+j and j+k is
 - $(1). 0^{\circ}$
- (2) 90°
- (3) 45°
- 75. A particle is moving eastwards with a velocity of 5 ms⁻¹. In 10 seconds the velocity changes to 5 ms⁻¹ northwards. The average acceleration in this time is
 - (1) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-west
- (3) $\frac{1}{2}$ ms⁻² towards north
- (4) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-east

Set Code :	T2
Booklet Code :	В

CHEMISTRY

76.	Pota	assium metal and	l potas	sium ion	S		•					
94	(1)	both react with	water			(2)	have the sar	ne numbe	er of proton	IS		
	(3)	both react with	chlor	ine gas	¥	(4)	have the sar	me electro	onic config	uration		
77.	stan	gms of sodium dard flask. 10 ml er into 100 ml of	of this solution	solution on. The co	were pi	petted ation o	out into anoth of the sodium	er flask ar chloride	nd made up solution no	with distilled		
	(1)	0.1 M	(2)	1.0 M		(3)	0.5 M	(4)	0.25 M			
78.	Con	Concentration of a 1.0 M solution of phosphoric acid in water is										
	(1)	0.33 N	(2)	1.0 N		(3)	2.0 N	(4)	3.0 N			
79.	Whi	ich of the follow	ing is a	Lewis a	cid?				-			
	(1)	Ammonia	Ū			(2)	Berylium cl	hloride	ě.			
	(3)	Boron trifluor	ide			(4)	Magnesium		es (4)			
80.	Whi	ich of the follow	ing co	nstitutes	the con	nnone	nts of a buffe	r solution	1?			
	Which of the following constitutes the components of a buffer so (1) Potassium chloride and potassium hydroxide								7.7. 1			
	(2)	Sodium acetate		5								
	(3) Magnesium sulphate and sulphuric acid											
	(4)	Calcium chlori	*									
				[90]		9.				to reco		
81.		ich of the follow	100				6 40	6		•		
	(1)	Acetic acid	(2)	Glucos	e '	(3)	Urea	(4)	Pyridine			
82.		culate the Stand $Cu/Cu^{+2} = (-) 0.3$		f of the	cell, Co	d/Cd ⁺²	//Cu ⁺² /Cu giv	en that E	Cd/Cd+2	= 0.44V and		
	(1)	(-) 1.0 V	(2)	1.0 V		(3)	(-) 0.78 V	(4)	0.78 V	181		
83.	A sc	olution of nickel	chlori	de was e	lectroly	sed us	ing Platinum	electrod	es. After el	ectrolysis,		
		nickel will be										
	- 50	H, gas will be	() - T				~					
	` '	20				14-B						
58						100000						

Set Code :	
Booklet Code :	В

84.	Wh	ich of the follow	ing me	etals will underg	o oxio	lation fastest?		
	(1)	Cu	(2)	Li	(3)	Zinc	(4)	Iron
85.	Wh	ich of the follow	ing car	nnot be used for	the st	erilization of dr	inking	water?
	(1)	Ozone			(2)	Calcium Oxyo	_	
	(3)	Potassium Chl	oride		(4)	Chlorine water	r	
86.		vater sample show			ng/litr	e of magnesium	sulpha	ite. Then, its hardness in
	(1)	1.0 ppm	(2)	1.20 ppm	(3)	0.60 ppm	(4)	2.40 ppm
87.	Sod	a used in the L-S	proce	ess for softening	of wa	ter is, Chemical	lly.	
	(1)				(2)	sodium carbon		cahydrate
	(3)	sodium carbona	ate	59 SF	(4)	sodium hydro	xide (4	0%)
88.	The	process of ceme	ntation	with zinc nowe	ler is l	rnown as		
	(1)		(2)	zincing			(4)	electroplating
89.	Carı	rosion of a metal	is fast	test in				
	(1)	rain-water	(2)	acidulated water	er (3)	distilled water	(4)	de-ionised water
90.	Whi	ch of the followi	ng is a	thermoset poly	mer?			
	(1)	Polystyrene			(2)	PVC		
	(3)	Polythene			(4)	Urea-formalde	hyde r	esin
91.	Che	mically, neopren	e is					
	(1)	polyvinyl benze	ne		(2)	polyacetylene		2 .
	(3)	polychloropren	e		(4)	poly-1,3-butad	liene	
92.	Vulc	anization involve	es heat	ing of raw rubbe	r with			
	(1)	selenium eleme			(2)	elemental sulp	hur	
	(3)	a mixture of Se		emental sulphur				and sulphur dioxide
					5-B			
		an ⁹⁸				*,		

93.	Petr	rol largely conta	ins							
	(1)	a mixture of u	nsatur	ated hydrocarbo	ons C ₅ -	C ₈				
	(2)	a mixture of b	enzene	e, toluene and xy	ylene					
	(3)	a mixture of s	aturate	d hydrocarbons	C ₁₂ - C	14	14			
	(4)	a mixture of s	aturate	d hydrocarbons	C ₆ -C	i				
94.	Whi	ich of the follow	ving ga	ses is largely re	esponsi	ble for acid-rain	?			
TET.	(1)	SO ₂ & NO ₂			(2)	CO ₂ & water va	apour			
81	(3)	CO ₂ &N ₂			(4)	N ₂ & CO ₂				
95.	BOI	D stands for			ĸ					
	(1)	Biogenetic Ox	ygen I	Demand	(2)	Biometric Oxygen Demand				
	(3)	Biological Ox	ygen D	emand	(4)) Biospecific Oxygen Demand				
		(a)	•	9 F				•		
96.	The	valency electro	nic cor	figuration of P	hospho	orous atom (At.N	lo. 15) is		
	(1)	3s ² 3p ³	(2)	$3s^1 3p^3 3d^1$	(3)	$3s^23p^23d^1$	(4)	3s1 3p2 3d2		
97.	Ane	element 'A' of A	t.No.12	2 combines with	an eler	nent 'B' of At.No	5.17.7	The compound form	ed i	
	(1)	covalent AB	(2)	ionic AB ₂	(3)	covalent AB ₂	(4)	ionic AB		
		To the second					1			
98.	The	number of neut	rons pi	resent in the ato						
	(1)	56	(2)	137	(3)	193	(4)	. 81		
99.	Hyd	rogen bonding i	in wate	r molecule is re	sponsil	ble for				
	(1)	decrease in its	freezi	ng point	(2)	increase in its	degree	of ionization		
	(3)	increase in its	boiling	g point	(4)	decrease in its	boilin	g point		
100.	In th	e HCl molecule	, the bo	onding between	hydrog	gen and chlorine	is	40		
								complex coordina	ite	

METALLURGICAL ENGINEERING

101.	. Rea	rlite is a mixtur	e of _					
	(1)	Alpha iron and	ł ceme	entite	(2)	Gamma iron ar	nd cen	nentite
	(3)	Ferrite and aus	stenite	3 I	(4)	Ledubrite and	auster	nite
102.	Ferr	rite is						
		bcc			(3)	hcp	(4)	sc
103.	Hot	hardness of the	high s	speed tool steel	owes t	o the presence o	f	
	(1)	Pearlite	(2)	Bainite	(3)	Martensite	(4)	Carbides
104.	The	packing factor	of sim	ple cubic is		6		
		45%		5) January 1997	CERT THE PARTY OF	68%	(4)	74%
105.	The	effective number	er of a	toms in a fcc un	it cell i	s		-
	(1)	2	(2)	4	(3)	12	(4)	14
106.	The	packing sequen	ce of a	atoms in hcp late	tice is			
	(1)	ABABAB	(2)	BCBCBC	(3)	ACACAC	(4)	ABCABCABC
107.		rule	es pre	dict extensive m	nutual s	solid solubility o	f met	als.
	(1)	Lever's	(2)	Hund's	(3)	Henry's	(4)	Hume-Rothery's
108.	The	crystal structure	e of ce	ementite is				
						orthorhombic	(4)	hexagonal
109.		is a di	ffusio	nless phenomer	ion.	90		
		Solidification		p		Martensitic tran	nsform	nation
	1000	Recrystallization	on	*	7070	Precipitation re		2012/06/2014
					17-B			· (MET)

110.	In an	nealing process, the hypoeutectoid steel is	
	(1)	heated above A3 line and cooled very slowly in furnace	
	(2)	heated below A1 line with a view to make steel ductile for cold working	
	(3)	heated below A1 line and cooled slowly with a view to remove internal stresses	
7	(4)	heated above A3 line and cooled in air	
111.	Aust	empering produces	
	(1)	austenite (2) martensite (3) bainite (4) Ferrite	
112.	Sub-	zero treatment of steel is carried out for	
	(1)	Converting austenite to martensite.	
	(2)	Converting austenite to pearlite.	
7	(3)	Converting austenite to bainite.	
	(4)	Converting austenite to ferrite.	
113.	Hard	lenability is the measure of	
	(1)	degree of depth to which steel can be hardened	
	(2)	degree of hardness of steels	
	(3)	the number of fine martensite flakes	
	(4)	the degree of transformation of austenite to pearlite	
114.	Tem	pering lead to the formaion of	
	(1)	bainite and low carbon martensite	
	(2)	austenite and low carbon martensite	
	(3)	ferrite and cementite	
	(4)	bainite and epsilon-carbide	
115.	Hard	dening is not required after	
	(1)	case carburizing (2) cyaniding	
	(3)	nitriding (4) core hardening	
			(MET
		18-B	(IAIC)

116.	Har	denability of ste	els, ca	n be increased	by			ä	
	(1)	alloy with tung	sten		(2)	grain refinemer	ıt	id.	
	(3)	cobalt addition	l.:		(4)	hot working			320
								E 20	
117.	In T	TT diagram	i	is plotted on a le	ogarithi	nic scale.			•
	(1)	temperature	(2)	time	(3)	transformation	(4)	texture	
	c			•					
118.	In st					r is		*	
	(1)	Cu	(2)	V	(3)	Mn	(4)	Co	
							70	*	
119.		syste							
	(1)	Fe-C	(2)	Cu-Ni	(3)	Al-Cu	(4)	Al-Pb	
120.	Exc	eptal	lother	metal shift TT	T diagra	am toward right.		*	
	(1)	Al	(2)	Ni	(3)	Cr	(4)	Co	
	12					50.0			
		is not a			20			•	*
	(1)	Goethite	(2)	Siderite	(3)	Limonite	(4)	Ilmenite	*
122.		is not equ				furnace exhaust	gas.		
	(1)	Dust catcher	3.	•	(2)	Gas scrubber			
	(3)	Electro-static	precip	itator	(4)	regenerator			
								K.	
123.	Pude	dling process is	for co	nverting pig iro	n to			4	
	(1)	steel	(2)	wrought iron	(3)	cast iron	(4)	alloy steel	
						0.00 10.00			
124.		is also k	nown	as Cinder					
	(1)	fuel	(2)	flux	(3)	sinter	(4)	slag	
		5 *		9			83		
	2				19-B	(2)			(MET)

Set Code :	T2
Booklet Code :	В

125.	CO,	+C = 2CO occu	ırs, ev	ery moment	in blast fu	rnace is calle	ed	reaction.	
	(1)	Boudourd			(2)	direct reduc	ction	- 2	
	(3)	solution loss			(4)	double com	position		
126.		is a	direct	reduction pr	rocess.				
		$FeO + CO \rightarrow I$			(2)	$Fe_2O_3 + 3CO_4 + 4CO_4$	$O \rightarrow 2Fe$	+3CO ₂	
,	(3)	$FeO + C \rightarrow Fe$	e + CC)	(4)	$Fe_3O_4 + 4CO$	O → Fe	+4CO ₂	
127.	Hot	shortness is cau	sed d	ue to	•				
		excess P			(3)	excess C	(4)	excess O ₂	
28.	The	solubility of gas	ses in	steel may be	explained	by	_ law.		
	(1)	Roult's	(2)	Henry's	(3)	Vant Hoff's	(4)	·Sievert's	
29.	Alu	ninium is added	in the	LD converte	er during s	teel making a	as a		
	(1) (3)	deoxidizer deoxidizer & g	rain re	efiner		grain refine grain coarse			
30.	Stair	nless steel may l	oe pro	duced by	pro	cess.			
		Bessemer .				HYL		(4) VAR	
31.	Rim	ming action is s	teel in	due to the li	beration o	of			
	(1)	10.40	(2)	100			(4)	CO	16
32.	The	top portion of th	e blas	t furnace is c	alled		2		
	(1)	hearth	(2)	bosh	(3)	stack	(4)	bustle pipe	
33.		proc	ess is	done for refi	ining of b	lister copper.			
		Zone refining				Poling	(4)	Fire refining	
					20-B				(

134.		is a mix	ture of ir	soluble impur	ities sepa	arated after al	kali treatı	nent in Bayer	's process.
	(1)	Green liquor			(2)	Spelter			
8	(3)	Matte		×	(4)	Red mud			391
				20					
135.	In H	all-Heroult pr	ocess	is us	sed as an	ode and	_ is used	l as cathode.	45
	(1)	Carbon rod,	Steel co	llector bar					
	(2)	Carbon rod,	copper b	ar					
	(3)	Steel rod, St	eel colle	ector bar	\$45.				r
	(4)	Copper rod,	Graphite	bar		34			
						1/7			
136.	Cala	mine is	ore of	Zinc.				¥ ×	
	(1)	sulphate	(2)	oxide	(3)	carbonate	(4)	sulphide	
						*			
137.				opper is separa					
	(1)	Softening	(2)	Drossing	(3)	Fuming	(4)	Distillation	
				*					
				of MgO is know				F 2	
*	(1)	Kroll's	(2)	Dow ·	(3)	Hansgrig	(4)	Pidgeon's	
			52						
139.				g of concentrat	ed nicke	l ore is perfo	rmed for	the extraction	of nickel
		its sulphide o			(2)	~	(4)		25
	(1)	O_2	(2)	CO ₂	(3)	SO ₂	(4)	NH ₃	
140.	Refi	ning of Ti don	e by	proce	ess.				
			1900	Hoope's		Poling	(4)	Van Arkel-D	e boer
	. ,	,		erenteste America			12.5		
141.	In_		mineral	both Ag and A	u are pre	esent.			
	(1)	Argentite	(2)	Horn Silver	(3)	Calaverite	(4)	Sylvanite	
			Ħ		21 D				(MET)

142.	Your	g's modulus is equal to
	(1)	strain/elastic limit
	(2)	(strain/stress) × 100
	(3)	the slope of initial linear portion of the stress-strain curve
	(4)	the slope of the plastic region of the stress-strain curve
143.	The	UTS of the specimen is equal to the
	(1)	small specific plastic strain by the original cross-sectional area of the specimen
	(2)	maximum load divided by the original cross-sectional area of the specimen
	(3)	the average stress divided by the average strain of the specimen
	(4)	applied stress at which fracture of the specimen take place
144.	The	unit of modulus of elasticity is
	(1)	kg/m (2) kg/m^2 (3) $kg.m$ (4) kg/s
145.	The	resilience of material is
15	(1)	its ability to absorb energy in the plastic range
	(2)	the total area under the stress - strain curve
	(3)	equal to the amount of work per unit volume, which can be done on the material without
	(4)	causing it to failure the ability of a material to absorb energy when deformed elastically and to return it when
	(4)	unloaded
146.	The	ultimate tensile strength of metals with increasing high strain rate.
	(1)	decreases
	(2)	increases
	(3)	remain constant
	(4)	first increases and then decreases

Set Code:	T2
Booklet Code :[В

						nsile specimen l		
	(1)	necking	(2)	branching	(3)	strengthening	(4)	redistribution
40	TI.		NI :-					
		unit of BHI			(2)	kg.mm²	(1)	kg/mm²
	(1)	kg.mm	(2)	kg/mm	(3)	kg.iiuii	(4)	Kg/IIIII
40	TL.		ala hattua	m amnazita fa	age of the	nyramid is		dearee
			14.000			pyramid is	(4)	
	(1)	96	(2)	106	(3)	136	(4)	140
-0	r D	111 b		aa ftan matari	alc are u	sually tested on	the	
			A. /			C-scale		
	(1)	A-scale	(2)	D-scale	(3)	C-scare	(+)	D-scare
5 1	A 1;.	na imparfac	tion in a cr	ystal is know	n ac			*
4.		slip					(4)	vacancy
	(1)	siip	(2)	twining	(3)	distocation	(+)	vacuacy
	The	omiatol whi	ah ia fraa f	rom dielocati	on is kno	wn as	27	
160	(1)	lattice	ch is nee i	tom distocati	(2)	Whiskers		19
	8 6	4	atoriol			kink	*.5	*
	(3)	perfect ma	ateriai		(4)	Kuik		
53.	In fo	ec	plane has	higher atomi	c density			
				(111)			(4)	(0001)
	(*)	(110)	(-)	()	. ,	. ,	` '	à 5
54.		is	prominent	y observed in	low C s	teel.		· i
				The second secon		Dispersion Stre	engthe	ening
		Strain hard				Yield point phe		
		14						
55.	Sing	gle phase m	aterials can	be strengthe	ned by _		10	
	(1)	Solid-solu	ition streng	thening	(2)	Dispersion Str	engthe	ening
	(3)	Strain hard	dening		(4)	Precipitation F	Iarden	ing
					23-B			

156.	Hot	working operation is carried out above			
	(1)	Recrystallisation temperature	(2)	Solvus Temperature	
	(3)	DBT Temperature	(4)	equi-cohesive Temperature	
10					
157.	Mos	t of the energy expended in deforming	a met	al by cold working is	
	(1)	utilized in overcoming deformation st	resse	S	
	(2)	utilized in deforming the metal		•	
	(3)	converted into heat			
	(4)	consumed in overcoming internal stre	esses		
158.	Poly	gonization occurs during			
	(1)	recovery	(2)	Primary recrystallisation	
	(3)	grain growth	(4)	Secondary recrystallisation	
			10		
159.	The	temperature at which new grains are fo	rmed	in a metal is	
	(1)	recrystallisation temperature	(2)		
	(3)	upper critical temperature	(4)	eutectic temperature	
				20	
160.	In fo	our high rolling mill, the bigger rolls ar	e call	ed	
				support rolls (4) main rolls	
161.	The	mould used for continuous casting of	steel i	s made of	
	(1)	The second secon		silver (4) cast iron	
162.	Ben	tonite is generally used in moulding sar	nd to j	provide	
	(1)	high refractoriness of the mould		•	
	(2)	improved hot strength of the mould			
	(3)	strength and plasticity of moulding sar	nd		
	(4)	edge hardness of the mould			
	,				0

163	•	c	asting is be	est suited only	for nor	-ferrous cast	tings.	
	(1)	Sand	(2).	Die	(3)	Shell	(4)	Centrifugal .
164	. In s	hell mouldir	ig, we use					
	(1)	clay bonde	d silica sar	nd				
	(2)	cement box	nded sand					
	(3)	thermo-set	ting resin a	and fine sand				
	(4)	gypsum an	d silica san	d				
165.		castir	igs are free	e from porosity	defec	t.,		
		CO ₂				Shell	(4)	Centrifugal
								52)
166.	The	purpose of	good gating	g system is to _	18			
	(1)	feed the ca	sting at a r	ate consistent v	vith the	rate of solid	lification	
100	(2)	acts as a re	servoir for	molten metal				
	(3)	help feed th	ne casting	until all solidifi	cation	takes place		
	(4)	feed molter	n metal fro	m pouring basi	n to ga	te		
167.	The	gating ratio	is	cross-sec	ctional	area.		
tii	(1)	sprue : tota	l runner : te	otal gate	(2)	sprue : total	runner	
	(3)	sprue : tota	l gate		(4)	total runner	: total gat	e
*0 34	- 00			er.				
168.	Chv	orinov's rule	for solidif	fication is giver	as		_0	
	(1)			volume of obje		A CONTRACTOR OF THE PARTY OF TH	2	
	(2)	Solidificati	on time = [volume of obje	ect / are	ea of objects]	3	
	(3)			volume of obje		_		
	(4)			volume of obje			(A .C.)	
				3				

25-B

Set Code :	T2
Booklet Code :	В

Cold	d shuts are ca	sting defects				
(1)	which occur	r due to some sar	nd shearing from	n the cope su	rface	
(2)		*				
(3)	which occur	r due to disconti	nuity in metal ca	asting resultir	ng from hindere	ed contraction
(4)						
				2		
Hot	tears are cast	ting defects				
		975A	,	n the cope su	rface	
(2)						
(3)	which occur	r due to disconti	nuity in metal c	asting resultir	ng from hinder	ed contraction
100						
. /		*				
In a	rc welding, ar	c is created bety	ween the electro	de and work	piece by	
					•	
(2)	voltage	14.1	£**			
35000		aracteristics .				
			* v			
				Α.		
Mos	st oxy-acetyle	ne welding is do	one by using	flam	ne.	
(1)	oxidizing					
(3)	hydrogen		(4)	neutral	*	
						· · · · · · · · · · · · · · · · · · ·
Oxy	gen to acetyle	ene ratio in neut	ral flame is			
		(2) 1:1			(4) 2:1	
TIG	welding, is b	est suited for we	elding			
				stainless ste	el	
. ,			(4)	aluminium		
(-)						
						, and the second
	(1) (2) (3) (4) Hot (1) (2) (3) (4) In an (1) (2) (3) (4) Mos (1) (3) Oxy (1) TIG (1)	(1) which occur (2) which occur (3) which occur (4) caused by to Hot tears are cass (1) which occur (2) which occur (3) which occur (4) caused by to In arc welding, an (1) flow of curr (2) voltage (3) material char (4) contact resi Most oxy-acetyle (1) oxidizing (3) hydrogen Oxygen to acetyl (1) 0.8:1 TIG welding, is but	(1) which occur due to some said (2) which occur due to excessive (3) which occur due to discontine (4) caused by two streams of me. Hot tears are casting defects (1) which occur due to some said (2) which occur due to excessive (3) which occur due to discontine (4) caused by two streams of me. In arc welding, arc is created between the same of the s	(2) which occur due to excessive gaseous mate (3) which occur due to discontinuity in metal ca (4) caused by two streams of metals that are to Hot tears are casting defects (1) which occur due to some sand shearing from (2) which occur due to excessive gaseous mate (3) which occur due to discontinuity in metal ca (4) caused by two streams of metals that are to In arc welding, arc is created between the electro (1) flow of current (2) voltage (3) material characteristics (4) contact resistance Most oxy-acetylene welding is done by using (1) oxidizing (2) (3) hydrogen (4) Oxygen to acetylene ratio in neutral flame is (1) 0.8:1 (2) 1:1 (3) TIG welding, is best suited for welding (1) mild steel (2)	(1) which occur due to some sand shearing from the cope su (2) which occur due to excessive gaseous material not able t (3) which occur due to discontinuity in metal casting resultir (4) caused by two streams of metals that are too cold to fuse Hot tears are casting defects	(1) which occur due to some sand shearing from the cope surface (2) which occur due to excessive gaseous material not able to escape (3) which occur due to discontinuity in metal casting resulting from hindered (4) caused by two streams of metals that are too cold to fuse properly Hot tears are casting defects (1) which occur due to some sand shearing from the cope surface (2) which occur due to excessive gaseous material not able to escape (3) which occur due to discontinuity in metal casting resulting from hindered (4) caused by two streams of metals that are too cold to fuse properly In arc welding, arc is created between the electrode and work piece by (1) flow of current (2) voltage (3) material characteristics (4) contact resistance Most oxy-acetylene welding is done by using flame. (1) oxidizing (2) carburizing (3) hydrogen (4) neutral Oxygen to acetylene ratio in neutral flame is (1) 0.8:1 (2) 1:1 (3) 1.2:1 (4) 2:1 TIG welding, is best suited for welding (2) stainless steel

(...

175. In MIG welding, the metal is transferred	in the	form of	
(1) fine spray of metal			
(3) weld pool	(4)	molecules	
# # # # # # # # # # # # # # # # # # #			
Stud and projection welding belong to		welding.	
(1) gas	(2)	arc	
(3) resistance	(4)	pressure	
177. Ignition temperature in thermit welding i	s		
(1) 1050°C (2) 950°C			
178 is strongest brazing join	its.	· · · · · · · · · · · · · · · · · · ·	
(1) butt (2) scraf		lap (4) spot	
179. The commonly used flux for brazing is		·	
(1) Resin	(2)	NH ₄ Cl	
(3) Borax	(4)	Soft iron	
	ie.		
180. Weld spelter is a			
(1) flux	(2)	electrode casting	
(3) welding defect	(4)	welding technique	
181 sampling of the ore particles giv	es acci	urate results.	
(1) Mechanical		cone and quartering	
(3) Jones riffles	(100/00/00/00	pipe	
32 33	6 5		
182 crusher have low reduction ra	atio.		
(1) Jaw	1.000	gyratory	
(3) roll	(4)	cone	
	27-B	(MET	D

Set Code :	T2
Booklet Code :	В

183.	Mate	ch the following						
	(p)	Collectors	(I)	pine oil				
	(q)	Frothers	(II)	lime	2.4			
	(r)	Depressants	(III)	Xanthates				
30	(s)	pH Modifires	(IV)	lactic acid				
	(1)°	p - IV, q - II, r - I	, s - II	I				
	(2)	p - IV, q - III, r -	II, s -	Ι .				
•	(3)	p - III, q - I, r - I	V, s - 1	Í				
	(4)	p - I, q - II, r - III	l, s - I	V				
				*				
84.	100	BSS screen mean	ns 10)	-03	16 W		
	(1)	openings per cm	\mathbf{n}^2	8	(2)	openings per m ²		
	(3)	openings per lin	ear in	ch	(4)	openings per mm ²		
						•		
85.	Min	eral dressing com	prise	s of liberation	n and sep	aration which deals wit	h respectiv	vely.
	(1)	Communication	and o	concentration	* 32			107
	(2)	communication	and si	zing				
	(3)	Sizing and conc	entrat	ion				
	(4)	concentration ar	ıd dev	vatering				
		U.		, ,				
86.		pyro	mete	is based on	blackboo	ly.		
	(1)	Thermoelectric			(2)	Resistance		
	(3)	Optical			(4)	Radiation		
		•						
87.		thermoc	ouple	s are used at	the temp	erature range from 0°	to 1650°C.	
	(1)	Chromel-Alume				Iron-Constant		
	(3)	Cu-Constant			(4).	Pt-(10%Rh-Pt)		
					13	*		
							20	

188		does	not com	bine chemically	either	by acid or basic	slags		
	(1)	Silica		120	(2)	Magnesite		٠,	
	(3)	Carbon bloo	ck		(4)	Dolomite			•
189	. The	manufacturi	ng of cok	e is called	34				***
	(1)	carbonizatio		-	(2)	- decarbonisatio	n		
	(3)	hydrogenati	-0		(4)	volatilization		18	
	()							,	
190	. Dw	ight-Llyod ma	achine is					2.	
	(1)	a machine u	sed in sar	nd moulding	7				
•	(2)	an oven to d	ry the sai	nd moulds					
	(3)	used for Sin	tering th	e iron ore					
	(4)	used for sme	elting tin	ore					
						•			
191.	The	refractorines	s of a ref	ractory is determ	mined	by			
		proximate as			(2)	170			
	(3)	pyrometric c	one equi	valent value	(4)	thermal expans	sion		
				12					
192.		is an							
	(1)	Pressure	(2)	Temperature	(3)	Volume	(4)	Density	
102	The						. 1		
193.				•		ge occurs in an is			
	(1)	decrease	(2)	increases	(3)	is unchanged	(4)	is equal to zero	
194	The	activity of a s	uhstance	ic	9	*			
		Fugacity°/F							
		Fugacity / Fu				a .			
			•	ity Coefficient					
	(4)			- 100 cons	nt / Tot	al number of ato	oms of	all components	
		1		·			01		
		•		9	29_R	*5			(MET)

Set Code :	T2
Booklet Code :	В

195.	The	rmodynamic equilibrium of any	system is	giv	en as	_		
		$\Delta G = RT \ln K$			$\Delta G = -RT \ln K$			
	(3)	$\Delta G^{\circ} = -RT \ln K$	((4)	$\Delta G^{\circ} = RT \ln K$			
	T.I		tom domá	1	to in			
196.		activity of pure substance, in its				(4)		
	(1)	<unity (2)="">unity</unity>	((3)	equal to unity	(4)	0 10 2.3	
197.	Ellin	ngham diagram for metal-oxide	system de	oes	not give idea abo	out		T
		oxidation of metals						
	(2)	reduction of metal oxides						
	(3)	kinetics of the oxidation reacti	on		(4)			
	(4)	values of partial pressure oxyg	en for the	e rea	ection			
198.	An i	isolated system is that	_					
	(1)	whose internal energy is zero			,			
	(2)	whose enthalpy value is negative	re					
	(3)	whose thermal conductivity is	infinite					
	(4)	which is not affected by its surr	rounding	S		4		
199.	Hea	t capacity of a substance at cons	tant pres	sure	(Cp)=		* *	
							$(dS)_{\mathbf{p}}$	
	(1)	$\left(\frac{dT}{dP}\right)V$ (2) $\left(\frac{dH}{dT}\right)P$	((3)	$\left(\overline{dT}\right)^{P}$	(4)	$\left(\overline{dT}\right)^{T}$	
200.	δ-Ι	Fe exists in the range						
	(1)	Room temperature - 600°C			723 - 910°C			
	(3)	1400 - 1539°C	((4)	910 - 1400°C			
			30-B					(MET