

7002

BOARD DIPLOMA EXAMINATION, (C-20) OCTOBER/NOVEMBER—2023

FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS—I

Time: 3 Hours [Total Marks: 80

PART-A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- **1.** If $A = \{1,2,3,4\}$ and $f: A \to \mathbb{R}$ defined by $f(x) = x^2 + x + 1$, then find the range of f.
- **2.** Resolve $\frac{1}{(x+1)(x+2)}$ into partial fractions.
- **3.** If $A = \begin{pmatrix} -1 & 4 \\ 3 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix}$, then find 2A B.
- **4.** Show that $\frac{\cos 36^{\circ} + \sin 36^{\circ}}{\cos 36^{\circ} \sin 36^{\circ}} = \cot 9^{\circ}$
- **5.** Prove that $cos(45^{\circ} + \theta)cos(45^{\circ} \theta) = \frac{1}{2}cos 2\theta$
- **6.** Find the modulus of the complex number $\frac{2+i}{1-i}$.
- 7. Find the equation of the straight line passing though the points (1, -1) and (-2, 3).

- **8.** Evaluate $\lim_{x\to 0} \frac{\sin 13x}{\sin 39x}$
- **9.** Find the derivative of $e^x \sin x$ w.r.t. x.
- **10.** If $x = a \sin \theta$ and $y = a \cos \theta$, then find $\frac{dy}{dx}$.

PART—B 8×5=40

- **Instructions:** (1) Answer **all** questions.
 - (2) Each question carries eight marks.
- **11.** (a) Solve the system of linear equations 2x y + 3z = 9, x + y + z = 6 and x y + z = 2 using Cramer's rule.

(OR)

- (b) If $A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$, then find A^{-1} .
- 12. (a) If $\cos x + \cos y = \frac{1}{3}$ and $\sin x + \sin y = \frac{1}{4}$, then find the values of $\cos(x+y)$ and $\sin(x+y)$.

(OR)

- (b) If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$, then prove that x + y + z = xyz.
- **13.** (a) Solve $\cos 8\theta + \cos 2\theta = \cos 5\theta$

(OR)

- (b) In any $\triangle ABC$, if $\angle B = 60^{\circ}$, then show that $\frac{c}{a+b} + \frac{a}{b+c} = 1$
- **14.** (a) Find the equation of the circle passing through the points (0, 0), (-2, 0) and (1, 3).

/7002 2 [Contd...

- (b) Find the equation of the rectangular hyperbola with focus (1, 2) and equation of the directrix is 2x + y 1 = 0.
- **15.** (a) If $x^y = e^{x-y}$, then show that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$.

(OR)

(b) Find the derivative of $\tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$ w.r.t. $\cot^{-1} x$.

PART—C $10 \times 1 = 10$

Instructions: (1) Answer the following question.

- (2) The question carries ten marks.
- (3) Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **16.** Find the equations of tangent, normal, lengths of tangent, normal, sub-tangent and sub-normal to the curve $y = x^2 6x + 8$ at the point (1, 3).
