

7224

BOARD DIPLOMA EXAMINATION, (C-20)

OCTOBER/NOVEMBER-2023

DCE-THIRD SEMESTER (COMMON) EXAMINATION

ENGINEERING MATHEMATICS-II

Time	:	3	Hours	1

[Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer all questions.

(2) Each question carries **three** marks.

1. Evaluate
$$\int (x^7 - \frac{3}{x} + \sin x) dx$$

- **2.** Evaluate $\int \frac{\cos(\log x)}{x} dx$
- **3.** Evaluate $\int \sin 8x \cos 3x \, dx$
- **4.** Evaluate $\int x^3 e^{2x} dx$
- **5.** Evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$
- **6.** Find the mean value of $y = x^3 + x$ between x = 0 and x = 1.
- **7.** Find the area bounded by the curve $y = x^2$, X-axis between x = 1 and x = 2.
- **8.** Find the differential equation of the family of curves $y = A \cos x + B \sin x$, where *A* and *B* are arbitrary constants.

/7224

[Contd...

www.manaresults.co.in

9. Solve
$$\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$$

10. Solve
$$x^4 dx + y^4 dy = 0$$

Instructions: (1) Answer any five questions.

(2) Each question carries **eight** marks.

11. (a) Evaluate
$$\int \frac{1}{4+5\cos x} dx$$

(OR)

(b) Evaluate
$$\int \frac{1}{x^2 + 4x + 13} dx$$

12. (a) Evaluate
$$\int \sin^4 x \cos^3 x \, dx$$

(OR)

(b) Evaluate
$$\int x \tan^{-1} x \, dx$$

13. (a) Evaluate
$$\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$

(OR)

(b) Show that
$$\int_{-1}^{1} \log\left(\frac{3-x}{3+x}\right) dx = 0$$

/7224

[Contd...

www.manaresults.co.in

14. (a) Find the R.M.S value of $\sqrt{27-4x^2}$ from x = 0 to x = 3.

(OR)

(b) Find the area enclosed between the curve $y = x^2$ and the line 2x - y + 3 = 0.

15. (a) Evaluate
$$\int_0^1 \frac{1}{1+x} dx$$
 using trapezoidal rule by taking $n = 4$

(OR)

(b) Find the volume generated by the revolution of the ellipse $9x^2 + 25y^2 = 225$ about X-axis.

Instructions : (1) Answer the following question.

(2) The question carries **ten** marks.

16. Solve
$$(x^2 + y^2) dx = 2xy dy$$
.

 $\star\star\star$