

# 7233

# **BOARD DIPLOMA EXAMINATION, (C-20)**

# OCTOBER/NOVEMBER—2023

## **DCHST-THIRD SEMESTER EXAMINATION**

#### MASS AND ENERGY BALANCES

Time: 3 Hours [ Total Marks: 80

### PART—A

 $3 \times 10 = 30$ 

**Instructions:** (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- **1.** State system of units.
- 2. Define molecular weight and gram equivalent weight.
- **3.** State Dalton's law of partial pressures.
- **4.** Differentiate between dry bulb and wet bulb temperature.
- **5.** Define Bypass in a continuous chemical process.
- **6.** Define key component and inert substance.
- **7.** Define stoichiometric coefficient.
- **8.** Distinguish between sensible heat and latent heat.
- **9.** Define calorific value of a fuel.
- **10.** Define endothermic and exothermic reactions.

**PART—B** 8×5=40

**Instructions:** (1) Answer any **five** questions.

- (2) Each question carries **eight** marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- 11. Explain different dimensionless groups.

## (OR)

Convert (a) 20 gal/hr to  $m^3/sec$ , (b) 500 atm to kPa and (c)  $7200m^3/hr$  to 1/sec.

**12.** Derive ideal gas equation and write the value of ideal gas constant in different system of units

# (OR)

4 gm of NaOH(M.Wt-40) ore dissolved in water to obtain 100 m1 solution. Find the normality and molarity of the solution.

**13.** With a neat block diagram, write the material balance overran absorption unit.

## (OR)

A feed to a continuous fractionating column analyses 28% benzene and 72% toluene by weight. The analysis of the distillate shows 52 wt% benzene and 5 wt% benzene was found in the bottom product. Calculate the amount of distillate and bottom product per 1000 kg of feed per hour.

**14.** In the production of sulphur trioxide, 100 kmol of  $SO_2$  and 100 kmol of  $O_2$  are fed to a reactor. If the % conversion of  $SO_2$  is 80, the calculate composition of the product on mole basis.

#### (OR)

Explain the degree of completion and % conversion of a chemical reaction.

**15.** Define and explain heat of formation, heat of reaction and heat of combustion with suitable examples.

#### (OR)

Heat capacity data for  $\mathrm{SO}_2$  gas is given by the following equation :

$$C_{p}^{0} = 43.458 + 10.634 * 10^{-3} \text{ T} - 5.945 * 10^{5} / \text{ T}^{2}$$

Calculate the heat needed to arise the temperature of 1 kmol pure  $\mathrm{SO}_2$  from 300K to 1000K.

**Instructions:** (1) Answer the following question.

- (2) The question carries **ten** marks.
- (3) Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **16.** (a) Explain the proximate and ultimate analysis of coal.
  - (b) Explain the necessity of recycle operation in chemical process industries.

\*\*\*