

C23-A-AA-C-EE-EEVT-M-MRAC-MET-MNG-TT-101

23103

BOARD DIPLOMA EXAMINATION, (C-23)

OCTOBER/NOVEMBER—2024

THIRD SEMESTER (COMMON) EXAMINATION

ENGINEERING MATHEMATICS - II

Time: 3 Hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Marks will be awarded only for the desired and accurate language/grammatical expressions.
- **1.** Evaluate : $\int (3x^2 + 2x + 5)dx$
- **2.** Evaluate: $\int \left(\frac{2x+7}{x^2+7x+10} \right) x$
- **3.** Evaluate : $\int \frac{(\tan^{-1} x)^2}{1 + x^2} dx$
- **4.** Evaluate : $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$
- **5.** Evaluate: $\int_{-1}^{1} x \, dx$
- **6.** Find the area of the region bounded by the curve $y = x^2 5x + 6$, the x-axis between the lines x = 2 and x = 3.
- 7. Find the mean value of $f(x) = x^3 + 3$ over [0, 1].
- **8.** Find the order and degree of $\left(\frac{dy}{dx}\right)^2 + y = e^x$.

9. Find the differential equation by eliminating the arbitrary constants A, B from the equation $y = Ae^{2x} + Be^{3x}$.

10. Solve
$$\frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}$$

10×5=50

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) The criterion for the award of marks is the appropriate content, quality and clarity of expression but not the length of your answer.
- **11.** (a) Evaluate $\int \left(\frac{1}{1+\cos x}\right) dx$
 - (b) Evaluate $\int \sin^3 x \cos x \, dx$
- **12.** (a) Evaluate $\int \left(\frac{1}{x^2 4x + 9}\right) dx$
 - (b) Evaluate $\int \frac{x}{(x-1)(x-3)} dx$
- **13.** (a) Evaluate $\int x^4 e^{-x} dx$
 - (b) Evaluate $\int_0^1 \left(\frac{x^3}{1+x^8} \right) dx$
- $14. \quad (a) \quad \int_0^{\frac{\pi}{2}} \left(\frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} \right) dx$
 - (b) Find the RMS value of $\sqrt{27-4x^2}$ over the range of the interval [0,2]

/23103

[Contd...

- **15.** Evaluate $\int_1^{11} x^3 dx$ using Simpson's rule by taking n=10.
- **16.** Solve $\frac{dy}{dx} + y \cot x = \sin x$
- **17.** (a) Solve $(D^2 + 16)y = 0$
 - (b) Solve $(D^2 + D 2)y = 0$
- **18.** Solve $(4D^2 + 4D + 1)y = e^{-x} + \cos x + x$

