JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year Examinations, May - 2018

MATHEMATICAL METHODS
(Common to EEE, ECE, CSE, EIE, IT, ETM)
Time: $\mathbf{3}$ hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) If $\sum_{i=1}^{10} x=15, \sum_{i=1}^{10} y=23, \sum_{i=1}^{10} x^{2}=25$ and $\sum_{i=1}^{10} x y=55$, find best fit of straight line $y=a+b x$.
b) Find the missing value from the following data

x	0	1	2	3
$\mathrm{f}(\mathrm{x})$	2	-	5	10

c) Let $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$, find L and U using $L U$ decomposition method.
d) Find the approximate value of $\sqrt[3]{30}$ using Newton's Raphson method.
e) Define finite Fourier sine and cosine transforms.
f) Find the half range sine series of $f(x)=x$ on $(0, l)$
g) Solve $z=p x+q y+\sqrt{1+p^{2}+q^{2}}$
h) Form the partial differential equation from $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$ by eliminating the arbitrary constants a, b.
i) Define divergent of a vector point function and what does its geometrical meaning?
j) Let $\bar{F}=\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-x z\right) \bar{j}+\left(z^{2}-x y\right) \bar{k}$ is an irrotational vector, find its scalar potential function.

PART-B

(50 Marks)
2. Define interpolation, and Find the interpolate polynomial from the following data

x	0	1	2	3	4
y	3	6	11	18	27

and hence find the value of $y(0.1), y(2.1)$ and $y(4.5)$.

OR

3. Given points $(1,-8),(2,-1)$ and $(3,18)$ satisfying the function $y=f(x)$, Determine the values of $y(2.5)$ and $y(2.0)$, using the Cubic spline approximation.
www.manaresults.co.in
4.a) Find the positive root of the equation $3 x=\cos x+1$ by iteration method.
b) Solve the following system by Gauss-Seidel method

$$
\begin{align*}
& 27 x+6 y-z=85 \\
& 6 x+15 y+2 z=72 \\
& x+y+54 z=110 \tag{5+5}
\end{align*}
$$

OR

5.a) Evaluate $\int_{0}^{2} e^{-x^{2}} d x$ using Trapezoidal rule as well as Simpson's rule, taking step size $\mathrm{h}=0.2$.
b) Use Adams-Bashforth Moulton method, find $\mathrm{y}(0.8)$ from $\frac{d y}{d x}=x+y, \mathrm{y}(0)=1$. Find the initial values $\mathrm{y}(0.2), \mathrm{y}(0.4)$ and $\mathrm{y}(0.6)$ from Taylors series method.
6.a) Let $\bar{f}_{s}(p)$ and $\bar{f}_{c}(p)$ are Fourier sine and cosine transform of $f(x)$, Prove that $F_{c}\{x f(x)\}=\frac{d}{d p} \bar{f}_{s}(p)$ and $F_{s}\{x f(x)\}=-\frac{d}{d p} \bar{f}_{c}(p)$
b) Obtain the Fourier series expansion of $f(x)=|x|$ in $(-\pi, \pi)$ and hence deduce that $\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+$

OR

7.a) Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}1 & \text { for }-1<x<1 \\ 0 & \text { for } x<-1, x>1\end{array}\right.$ and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$.
b) Find the Fourier sine transform of $x e^{-2 x}, x>0$.
8. Find the solution of the one dimensional heat equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ under the boundary conditions $u(0, t)=0, u(l, t)=0$ and $u(x, 0)=x(l-x), 0<x<l, l$ being the length of the rod.

OR

9.a) Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$
b) Solve $z^{2}\left(p^{2} x^{2}+q^{2}\right)=1$
10.a) Applying Green's theorem, evaluate $\int_{c}(y-\sin x) d x+\cos x d y$, where C is the plane triangle enclosed by the lines $y=0, x=\frac{\pi}{2}$ and $y=\frac{2 x}{\pi}$.
b) Use Divergence theorem to evaluate $\int_{S} \vec{F} \bullet \vec{n} d s$ over the surface of sphere $x^{2}+y^{2}+z^{2}=a^{2}$ where $\bar{F}=3 x \bar{i}+3 y \bar{j}+3 z \bar{k}$.

OR

11. Verify Gauss divergence theorem for $\bar{F}=\left(x^{3}-y z\right) \bar{i}-2 x^{2} y \bar{j}+z \bar{k}$ taken over the cube bounded by the planes $x=y=z=a$.
