JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD

B.Tech I Year Examinations, June - 2014

MATHEMATICAL METHODS
(Common to EEE, ECE, CSE, EIE, BME, IT, ETM, ECOMPE, ICE)
Time: 3 hours
Max. Marks: 75

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

1.a) Write the method of least squares to fit a straight line from the given data $\left(x_{i}, y_{i}\right)$ where $i=1,2,3, \ldots \ldots \ldots . . . n$.
[2m]
b) Solve the difference equation $y_{n+2}+5 y_{n+1}+6 y_{n}=0$.
c) Explain graphically the root of an equation.
d) Explain Taylor's series method for solving an initial value problem. [3m]
e) Form the Partial differential equation from $\mathrm{f}(\mathrm{x}+\mathrm{t})+\mathrm{g}(\mathrm{x}-\mathrm{t})$. [2m]
f) Write the boundary conditions for the following problem:

A rectangular plate is bounded by the line $x=0, y=0, x=a$ and $y=b$. Its surfaces are insulated. The temperature along $\mathrm{x}=0$ and $\mathrm{y}=0$ are kept at $0^{0} \mathrm{C}$ and the others are kept at $100^{\circ} \mathrm{C}$.
g) Define Fourier transform and Finite Fourier transform.
[2m]
h) Find the sum of the Fourier series for $f(x)=\left\{\begin{array}{l}x, 0 \leq x<1 \\ 2,1<x<2\end{array}\right.$ at $x=1, x=0.5$ and 1.5.
[3m]
i) Prove that $\vec{F}=y z \vec{i}+z x \vec{j}+y x \vec{k}$ is irrotational.
[2m]
j) State Green's theorem. Write the line integral which gives the area of a plane region.
[3m]

PART-B

2.a) Find Newton's interpolating polynomial of degree 3 in the way to approximate the specific value for $\mathrm{x}=4.3$.

X	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	11.5	12.5
$\mathrm{~F}(\mathrm{x})$	0	2.3	4.2	2.7	3.2	3.7	3.0	4.3	4.5	4.7	3.9	4.1

b) Fit a curve of the form $y=a x^{2}+b x+c$ from the following data:

X	1	2	3	4
y	6	11	18	27

OR
3.a) Find the curve of best fit of the type $y=a e^{b x}$ to the following data:

X	1	5	7	9	12
y	10	15	12	15	21

b) Find $\mathrm{F}(3)$ from the following data:
4. Given that $\frac{d y}{d x}=\frac{1}{2}\left(1+x^{2}\right) y^{2} ; \quad y(0)=1 ; \quad y(0.1)=1.06 ; \quad y(0.2)=1.12 \quad$ and $y(0.3)=1.21$. Evaluate $y(0.4)$ and $y(0.5)$ by a predictor corrector method.

OR
5. Using Gauss-Seidel iterative method solve $\left[\begin{array}{ccc}5 & -2 & 3 \\ -3 & 9 & 1 \\ 2 & -1 & -7\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$.
6.a) Find the Fourier series of the function $f(x)=\left\{\begin{array}{l}0,-\pi \leq x \leq 0 \\ \operatorname{Sin} x, 0 \leq x \leq \pi\end{array}\right.$. Hence evaluate $\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots .$.
b) Find the Fourier sine transform of $\frac{e^{-a x}}{x}$, where $\mathrm{a}>0$.

OR
7. Find the Fourier transform of $f(x)=\left\{\begin{array}{l}a^{2}-x^{2},-a \leq x \leq a \\ 0, \text { other wise }\end{array}\right.$. Hence deduce that $\int_{0}^{\infty} \frac{\operatorname{Sin} t-t \operatorname{Cos} t}{t^{3}} d t=\frac{\pi}{4}$.
8. A string is stretched and fastened to two points at $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{L}$. Motion is started by displacing the string into the form $y=k\left(l x-x^{2}\right)$ from which it is released at time $t=0$. Find the displacement of any point on the string at a distance of x from one end at time t.

OR
9.a) Solve $z^{2}\left(p^{2}+q^{2}\right)=x^{2}+y^{2}$.
b) Find the singular integral of $z=p x+q y+p q+q^{2}$.
10.a) Verify Green's theorem for $\vec{F}=\left(x^{2}+y^{2}\right) \vec{i}-2 y x \vec{j}$ taken around the rectangle bounded by the lines $\mathrm{x}=\mathrm{a}, \mathrm{x}=-\mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{b}$.
b) Evaluate $\int_{C}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right]$, where C is the boundary of the region bounded by the lines $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1$.

OR

11. Verify gauss divergence theorem for the vector point function. $\vec{F}=\left(x^{3}-y z\right) \vec{i}-2 y x^{2} \vec{j}+2 \vec{k}$ Over the cube bounded by $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0$ and $\mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}, \mathrm{z}=\mathrm{a}$.
