JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech I Year Examinations, November/December - 2015

MATHEMATICAL METHODS
(Common to EEE, ECE, CSE, EIE, BME, IT)
Time: 3 hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) Evaluate $\delta y_{3 / 2}$
b) Solve the difference equation $y_{n+2}+5 y_{n+1}+6 y_{n}=0$.
c) Find the interval in which a root of $3 x-e^{x}+\sin x=0$ lies.
d) If $y^{\prime}=y-x$ and $y(0)=1$, find $y(0.2), y(0.4)$ by Euler's method, taking $h=0.2$.
e) If $f(x)=x+x^{2}$ in $-\pi<x<\pi$ then find the average value of $f(x)$ in $(-\pi, \pi)$.
f) If Fourier transform of $f(t)=\frac{1}{s^{2}+1}$, then find $F[f(3 t)]$.
g) Form the partial differential equation from $z=a x+b y+\frac{a}{b}$.
h) Find one integral solution of $x p+y q=x$.
i) Find $\nabla x^{3} z$.
j) Show that $\bar{v}=(x+3 y) i+(y-3 z) j+(x-2 z) k$ is solenoidal.

PART-B

2.a) Find $y(1.6)$ if $y(1.2)=1.36, y(2.0)=0.58$ and $y(2.5)=0.34, y(3.0)=0.20$ using Lagranges interpolation formula.
b) Fit a straight line to the given data by the method of least squares.

x	1	2	3	4	5	6
y	14	33	40	63	76	85
OR						

3.a) Use Newton's Backward difference formula to find the area of a circle when the diameter is 105 , the area for different values of diameter are given below.

d	80	85	90	95	100
A	5026	5674	6362	7088	7854

b) Obtain a relation of the form $y=a(b)^{x}$ for the following data by the method of least squares.
[5+5]

4. Find $y(0.1)$ and $y(0.2)$ using Runge Kutta fourth order formula given that $\frac{d y}{d x}=x+x^{2} y$ and $y(0)=1$.

OR

5. Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ by dividing the range of integration into 4 equal parts using
a) Trapezoidal rule,
b) Simpsons $\frac{1}{3}$ rd rule.
6. Find the Fourier sine and cosine Transform of $x e^{-a x}$.

OR

7.a) Obtain Fourier series for the function given by

$$
f(x)= \begin{cases}1+\frac{2 x}{\pi}, & -\pi \leq x \leq 0 \\ 1-\frac{2 x}{\pi}, & 0 \leq x \leq \pi\end{cases}
$$

b) Expand $\pi x-x^{2}$ as a half range sine series in the range $0 \leq x \leq \pi$.
8. Solve the following partial differential equations
a) $x^{2} p^{2}+y^{2} q^{2}=z^{2}$
b) $z(x-y)=x^{2} p-y^{2} q$.
9. Solve the problem of a vibrating string with the following boundary conditions.
a) $y(0, t)=0$
b) $y(l, t)=0$
c) $\frac{\partial}{\partial t} y(x, 0)=x(x-L), 0<x<L$
d) $y(x, 0)=\left\{\begin{array}{cc}x, & 0<x<\frac{L}{2} \\ L-x, & \frac{L}{2}<x<L\end{array}\right.$
10.a) Evaluate $\nabla^{2} \log r$ where $r=\sqrt{x^{2}+y^{2}+x^{2}}$.
b) Prove that the vector field $\bar{F}=\left(x^{2}+x y^{2}\right) i+\left(y^{2}+x^{2} y\right) j \quad$ is conservative and find the scalar potential.

OR

11. Verify Green's theorem for $\oint\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y$ where C is the square with vertices $(0,0),(2,0),(2,2),(0,2)$
