Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) If $\mathrm{h}=1$, find $\Delta^{2}\left(x^{3}-3 x^{2}\right)$
b) Find the particular solution of $\left(E^{2}-7 E+12\right) y=2^{n}$
c) Find the interval in which a root of $x \log _{10} x=1.2$ lie.
d) If $y^{\prime}=x+y$ and $\mathrm{y}(0)=1$, find $y^{(1)}(x)$ by Picard's method.
e) If $f(x)=x \sin x$ in $(0 \leq x \leq 2 \pi)$, then find a_{0} in the Fourier series of $f(x)$.
f) Find the finite Fourier sine transform of $\mathrm{f}(\mathrm{x})=x^{2}, 0<x<\pi$.
g) Form the partial differential equation from $z=(x+a)(y+b)$.
h) Find one integral solution of $(x-y) p+(y-x-z) q=z$.
i) Find $\nabla x y^{2} z$.
j) State Green's theorem.

PART-B

(50 Marks)
2.a) Using Gauss backward interpolation formula find $\mathrm{y}(8)$ from the following table.

x	0	5	10	15	20	25
y	7	11	14	18	24	32

b) Fit an equation of the form $\mathrm{y}=\mathrm{ab}^{x}$ to the following data

x	2	3	4	5	6
y	144	172.8	207.4	248.8	298.5

3.a) Use Lagranges formula inversely to obtain the value of t when $A=85$ from the following table.

t	2	5	8	14
A	94.8	87.9	81.3	68.7

b) Fit the curve $y=a e^{b x}$ to the following data.

x	0.0	0.5	1.0	1.5	2.0	2.5
y	0.10	0.45	2.15	9.15	40.35	180.75

www. ManaResults.co.in
4. Tabulate the values of $\mathrm{y}(0.1)$, and $\mathrm{y}(0.2)$ using Taylor series given that $\frac{d y}{d x}=x^{2}-y, y(0)=1$. Compare with the actual values.

OR

5. Given that $y^{\prime}=x^{2}+y^{2}, y(0)=1$. Determine $y(0.1)$ by modified Euler's method.
6. Find the Fourier Transform of $f(x)=\left\{\begin{array}{cc}1-x^{2} & \text { if }|x|<1 \\ 0 & \text { if }|x|>1\end{array}\right.$, Hence evaluate

$$
\begin{equation*}
\int_{0}^{\infty}\left[\frac{x \cos x+\sin x}{x^{3}}\right] \cos \frac{x}{2} d x \tag{10}
\end{equation*}
$$

OR
7. Obtain Fourier series for $f(x)=x+x^{2}$ in $-\pi<x<\pi$ and deduce that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
8.a) Form the partial differential equation by eliminating the arbitrary function from $x y+y z+z x=f\left(\frac{z}{x+y}\right)$
b) Solve the partial differential equation $\left(x^{2}-y z\right) p+\left(y^{2}-x z\right) q=\left(z^{2}-x y\right)$.

OR

9. Solve the boundary value problem $u_{t t}=a^{2} u_{x x} 0<x<l, t>0$ with $u(0, t)=0$, $u(l, t)=0, u(x, 0)=0$ and $u_{t}(x, 0)=\sin ^{3} \frac{\pi x}{l}$
10. Verify Green's theorem for $\int_{c}\left(x y+y^{2}\right) d x+x^{2} d y$ where c is bounded by $y=x$ and $y=x^{2}$.

OR

11. Verify stokes theorem for $\bar{F}=\left(x^{2}+y^{2}\right) \bar{i}-2 x y \bar{J} \bar{j}$ taken around the rectangle bounded by the lines $x= \pm a, y=0, y=b$.
