Code No: 111AL

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year Examinations, October/November - 2016 **MATHEMATICAL METHODS** (Common to EEE, ECE, CSE, EIE, BME, IT, ETM)

Time: 3 hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

If h = 1, find $\Lambda^2(x^3 - 3x^2)$ 1.a) [2] Find the particular solution of $(E^2 - 7E + 12)y = 2^n$ b) [3] Find the interval in which a root of $x \log_{10} x = 1.2$ lie. [2] c) If y' = x + y and y(0)=1, find $y^{(1)}(x)$ by Picard's method. d) [3] If $f(x) = x \sin x$ in $(0 \le x \le 2\pi)$, then find a_0 in the Fourier series of f(x). [2] e) Find the finite Fourier sine transform of $f(x) = x^2$, $0 < x < \pi$ [3] f) Form the partial differential equation from z = (x+a)(y+b). g) [2] h) Find one integral solution of (x-y)p + (y-x-z)q = z. [3] Find $\nabla x y^2 z$. i) [2]

State Green's theorem i) [3]

PART-B

(50 Marks)

Using Gauss backward interpolation formula find y(8) from the following table. 2.a)

x	0	5	10	15	20	25
у	7	11	14	18	24	32

Fit an equation of the form $y = ab^{\chi}$ to the following data b)

<i>x</i>	2	3	4	5	6
y	144	172.8	207.4	248.8	298.5
	·		OR		

3.a) Use Lagranges formula inversely to obtain the value of t when A = 85 from the following table.

t	2	5	8	14
A	94.8	87.9	81.3	68.7

Fit the curve $y = ae^{bx}$ to the following data. b)

x	0.0	0.5	1.0	1.5	2.0	2.5
y	0.10	0.45	2.15	9.15	40.35	180.75

www.ManaResults.co.in

R13

Max. Marks: 75

(25 Marks)

4. Tabulate the values of y(0.1), and y(0.2) using Taylor series given that $\frac{dy}{dx} = x^2 - y$, y(0) = 1. Compare with the actual values. [10]

OR

- 5. Given that $y' = x^2 + y^2$, y(0) = 1. Determine y(0.1) by modified Euler's method.
- 7. Obtain Fourier series for $f(x) = x + x^2$ in $-\pi < x < \pi$ and deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ [10]
- 8.a) Form the partial differential equation by eliminating the arbitrary function from $xy + yz + zx = f\left(\frac{z}{x+y}\right)$

b) Solve the partial differential equation $(x^2 - yz)p + (y^2 - xz)q = (z^2 - xy)$. [5+5] OR

- 9. Solve the boundary value problem $u_{tt} = a^2 u_{xx} 0 < x < l, t > 0$ with u(0,t) = 0, u(l,t) = 0, u(x,0) = 0 and $u_t(x,0) = \sin^3 \frac{\pi x}{l}$ [10]
- 10. Verify Green's theorem for $\int_{c} (xy + y^2) dx + x^2 dy$ where c is bounded by y = x and $y = x^2$. [10]
- 11. Verify stokes theorem for $\overline{F} = (x^2 + y^2)\overline{i} 2xy\overline{J}\overline{j}$ taken around the rectangle bounded by the lines $x = \pm a, y = 0, y = b$. [10]

---00000----

www.ManaResults.co.in