JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year Examinations, December - 2017
 MATHEMATICAL METHODS
 (Common to EEE, ECE, CSE, EIE, IT, ETM)

Time: 3 hours

Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) Prove that $h \Delta=\log (1+\Delta)=-\log (1-\Delta)=\sin ^{-1}(\mu \delta)$.
b) If $y=a_{o}+a_{1} x, \sum x_{i}=15, \sum y_{i}=30, \sum x_{i} y_{i}=110, \sum x_{i}^{2}=55$ then find a_{1}.
c) Find square root of a number N by Newton-Raphson method.
d) Find first approximation of $y^{\prime}=x+y$ if $y(0)=1$ by picards method.
e) Express $\mathrm{f}(x)=x$ as a Fourier Series in $(-\Pi, \Pi)$.
f) Prove that $F\{f(a x)\}=\frac{1}{a} \bar{F}\left(\frac{p}{a}\right)$, where $\bar{F}(p)=$ Fourier transform of $f(\mathrm{x})$.
g) Eliminate arbitrary function from $z=f\left(x^{2}+y^{2}+z^{2}\right)$.
h) Find the general solution of $\sqrt{p}+\sqrt{q}=1$.
i) If $\phi=3 x^{2} y-y^{3} z^{2}$ find $\operatorname{grad} \phi$ at $(1,-2,-1)$.
j) Find the curl of the vector $x y z \bar{i}+3 x^{2} y \bar{j}+\left(x z^{2}-y^{2} z\right) \bar{k}$.

PART-B

(50 Marks)
2.a) Find $f(2.5)$ using Newton's forward formula from the following table.

x	0	1	2	3	4	5	6
y	0	1	16	81	256	625	1296

b) Using Lagranges interpolation formula, find $y(10)$ from the following table.

x	5	6	9	11
y	12	13	14	16

OR

3.a) Fit a second degree polynomial to the following data by the method of least squares.

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

b) Find the parabola of the form $y=a x^{2}+b x+c$ passing through the points $(-1,2),(0,1)$ and (1, 4).
www.ManaResults.co.in
4.a) Find a root of the equation $x-\cos x=0$ using bisection method correct to two decimals places.
b) Find $f^{\prime}(6)$ from the following data

x	0	2	3	4	7	9
$f(x)$	4	26	58	112	466	922

OR
5.a) Find $\mathrm{y}(0.1)$ and $\mathrm{y}(0.2)$ using R-K fourth order formula given that $y^{\prime}=x^{2}-y$ and $\mathrm{y}(0)=1$.
b) Use Milne's method to find $\mathrm{y}(0.8)$ and $\mathrm{y}(1.0)$ from $y^{\prime}=1+y^{2}, y(0)=0$, if $y_{1}=0.2027, y_{2}=0.4228, y_{3}=0.6841$.
6. Find the Fourier series of $f(x)=x \sin x,-\Pi<x<\Pi$. Hence deduce that $\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots \ldots=\frac{1}{4}(\Pi-2)$.

OR

7.a) Using Fourier integral show that $e^{-a x}=\frac{2 a}{\Pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2}+a^{2}} d \lambda,(a>0)$.
b) Find $F_{s}^{-1}\left\{\frac{s}{1+s^{2}}\right\}$.
8.a) Solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 . \mathrm{e}^{-3 x}$.
b) If a string of length l is initially at rest in equilibrium position and each of its points is given the velocity $V_{o} \operatorname{Sin}^{3} \frac{\Pi x}{l}$, find the displacement $y(x, t)$.

OR

9. An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angles to them. The breadth is π. This end is maintained at a temperature u_{o} at all points and the other edges are at zero temperature. Determine the temperature at any point of the plate in the steady state.
10. Show that $\iint_{S} \bar{F} . \hat{n} d s=\frac{3}{2}$ where $\vec{F}=4 \times z i-y^{2} j+y z k$ and S is the surface of the cube bounded by the planes $x=0, x=1, y=0, y=1, z=0, z=1$.

OR

11. Verify Stoke's theorem for $\bar{F}=\left(x^{2}+y-4\right) i+3 x y j+\left(2 x z+z^{2}\right) k$ over the surface of hemisphere $x^{2}+y^{2}+z^{2}=16$ above the xoy plane.
