Code No: 111AL

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year Examinations, December - 2017 MATHEMATICAL METHODS (Common to EEE, ECE, CSE, EIE, IT, ETM)

Time: 3 hours

Max. Marks: 75

(25 Marks)

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

		(25 Marks)
1.a)	Prove that $h\Delta = \log(1+\Delta) = -\log(1-\Delta) = \sin^{-1}(\mu\delta)$.	[2]
b)	If $y = a_o + a_1 x$, $\sum x_i = 15$, $\sum y_i = 30$, $\sum x_i y_i = 110$, $\sum x_i^2 = 55$ then find a_1 .	[3]
c)	Find square root of a number N by Newton-Raphson method.	[2]
d)	Find first approximation of $y' = x + y$ if $y(0) = 1$ by picards method.	[3]
e)	Express $f(x) = x$ as a Fourier Series in $(-\Pi, \Pi)$.	[2]
f)	Prove that $F\left\{f\left(ax\right)\right\} = \frac{1}{a}\overline{F}\left(\frac{p}{a}\right)$, where $\overline{F}\left(p\right)$ = Fourier transform of $f(x)$.	[3]
g)	Eliminate arbitrary function from $z = f(x^2 + y^2 + z^2)$.	[2]
h)	Find the general solution of $\sqrt{p} + \sqrt{q} = 1$.	[3]
i)	If $\phi = 3x^2y - y^3z^2$ find grad ϕ at (1, -2, -1).	[2]
j)	Find the curl of the vector $xyz\overline{i} + 3x^2y\overline{j} + (xz^2 - y^2z)\overline{k}$.	[3]

PART-B

(50 Marks)

2.a) Find f(2.5) using Newton's forward formula from the following table.

x	0	1	2	3	4	5	6
y	0	1	16	81	256	625	1296

b) Using Lagranges interpolation formula, find y(10) from the following table.

x 5	6	9	11
y 12	13	14	16

OR

3.a) Fit a second degree polynomial to the following data by the method of least squares.

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

b) Find the parabola of the form $y = ax^2 + bx + c$ passing through the points (-1, 2), (0, 1) and (1, 4). [5+5]

R13

- 4.a) Find a root of the equation $x \cos x = 0$ using bisection method correct to two decimals places.
 - b) Find f'(6) from the following data

x	0	2	3	4	7	9
f(x)	4	26	58	112	466	922

5.a) Find y(0.1) and y(0.2) using R-K fourth order formula given that $y' = x^2 - y$ and y(0) = 1.

OR

- b) Use Milne's method to find y(0.8) and y(1.0) from $y' = 1 + y^2$, y(0) = 0, if $y_1 = 0.2027$, $y_2 = 0.4228$, $y_3 = 0.6841$. [5+5]
- 6. Find the Fourier series of $f(x) = x \sin x$, $-\Pi < x < \Pi$. Hence deduce that $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots = \frac{1}{4} (\Pi - 2).$ [10]

OR

7.a) Using Fourier integral show that
$$e^{-ax} = \frac{2a}{\Pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2} + a^{2}} d\lambda$$
, $(a > 0)$.
b) Find $F_{s}^{-1} \left\{ \frac{s}{1 + s^{2}} \right\}$. [5+5]

8.a) Solve
$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$$
 where $u(x, 0) = 6.e^{-3x}$.

b) If a string of length l is initially at rest in equilibrium position and each of its points is given the velocity $V_o \sin^3 \frac{\Pi x}{l}$, find the displacement y(x,t). [5+5]

OR

- 9. An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angles to them. The breadth is π . This end is maintained at a temperature u_o at all points and the other edges are at zero temperature. Determine the temperature at any point of the plate in the steady state. [10]
- 10. Show that $\iint_{s} \vec{F} \cdot \hat{n} ds = \frac{3}{2}$ where $\vec{F} = 4 \times zi y^2 j + yzk$ and S is the surface of the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. [10]
- 11. Verify Stoke's theorem for $\overline{F} = (x^2 + y 4)i + 3xyj + (2xz + z^2)k$ over the surface of hemisphere $x^2 + y^2 + z^2 = 16$ above the xoy plane. [10]

---00000----

www.ManaResults.co.in