Code No: 113AU

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2017 ELECTRONIC DEVICES AND CIRCUITS (Common to EEE, ECE, CSE, EIE, IT, MCT)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.Part A is compulsory which carries 25 marks. Answer all questions in Part A.Part B consists of 5 Units. Answer any one full question from each unit.Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

		/ I I I I I I I I I I
1.a)	For what voltage will the reverse current in p-n junction Germanium diode re	ach 90%
	of its saturation value at room temperature?	[2]
b)	Write a short note on Varactor diode.	[3]
c)	Derive the ripple factor for full wave rectifier.	[2]
d)	Explain voltage regulation using zener diode.	[3]
e)	Explain how transistor acts as an amplifier.	[2]
f)	Give the Comparisons between CB, CE, CC configurations.	[3]
g)	Define thermal runaway.	[2]
h)	Compare all the three biasing circuits.	[3]
i)	For a p-channel Silicon FET, with effective width $a^2=2\times 10^{-4}$ cm and channel	
	resistivity $\rho = 10 \Omega$. Find the pinch off voltage.	[2]
i)	Draw the circuit diagram of fixed bias arrangement of a JFET.	[3]

PART-B

2.a) Explain PN diode characteristics in forward bias and reverse bias regions.

b) Find the width of the depletion layer in a germanium junction diode which has the following specifications: Area A = 0.001 cm², $\sigma_n = 1$ mhos / cm, $\mu_n = 3800$ cm²/sec, $\mu_p = 1800$ cm²/sec. [5+5]

OR

- 3.a) Explain tunnel diode operation with the help of energy band diagrams.
- b) Explain the static characteristics of SCR.
- 4.a) A full wave rectifier circuit with C-type capacitor filter is to supply a D.C. Current of 20 mA at 16V. If frequency is 50 Hz ripple allowed is 5%. Calculate:
 i) Required secondary voltage of the transformer.
 ii) Ratio of I peak/ I_{max} through diodes and the value of C required.
 - b) With a neat circuit diagram and necessary wave forms explain the operation of half wave rectifier. [5+5]

OR

- 5.a) An ac supply of 220V is applied to a half wave rectifier circuit through a transformer with a turns ratio of 10:1. Assume the ideal diode. Find:i) dc output voltageii) PIV.
 - b) Compare half wave, full wave and bridge rectifier circuits. [5+5]

www.ManaResults.co.in

(50 Marks)

[5+5]

(25 Marks)

R13

- 6.a) Explain CE configuration with the help of input and output characteristics.
 - b) A transistor is operated at a forward current of $2\mu A$ and with the collector open circuited. Calculate the junction voltages V_C and V_E , the collector to emitter voltage V_{CE} assuming $I_{CO} = 2\mu A$, $I_{EO} = 1.6\mu A$ and $\alpha_N = 0.98$. [5+5]

OR

- 7.a) Draw and explain h-parameter model of BJT.
 - b) Qualitatively explain the static V-I characteristics of UJT. [5+5]
- 8.a) Explain the need for biasing in electronic circuits. What are the factors affecting the stability factor.
 - b) A transistor with $\beta = 100$ is to be used in Common Emitter Configuration with collector to base bias. The collector circuit resistance is $R_C = 1k\Omega$ and $V_{CC} = 10V$. Assume $V_{BE} = 0$.

i) Choose R_B so that the quiescent collector to emitter voltage is 4V.ii) Find the stability factor.

[5+5]

OR

- 9.a) Determine the quiescent currents and the collector to emitter voltage for a Ge transistor with $\beta = 50$ in the self biasing arrangements. The circuit component values are $V_{CC} = 20V$, $R_C = 2k\Omega$, $R_e = 0.1 \ k\Omega$, $R_1 = 100 \ k\Omega$ and $R_2 = 5 \ k\Omega$. Find the stability factor S.
 - b) Explain the terms Bias Stabilization and Bias Compensation. [5+5]
- 10.a) Derive the expression for the width of depletion region 'W' in the case of p-channel JFET.
 - b) Explain the working of a depletion type MOSFET with a neat construction diagram and its characteristics. [5+5]

OR

11. Draw the circuit of source follower Amplifier and derive the expressions for A_I , A_V , R_i and R_o . [10]

---00000----