JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech II Year I Semester Examinations, February/March - 2016

MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CSE, IT)
Time: 3 Hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) Construct the truth tables of the following formulas.

$$
\begin{equation*}
(\mathrm{P} \leftrightarrow \mathrm{Q}) \leftrightarrow((\mathrm{P} \wedge \mathrm{Q}) \mathrm{v}(\sim \mathrm{P} \wedge \sim \mathrm{Q}) \tag{2}
\end{equation*}
$$

b) Write Converse, Opposite, Contrapositive of the statement "If lines AB and CD are parallel, then the alternative interior angles are equal".
c) Let $f: R->R$ and $g: R->R$, where R is the set of real numbers. Find fog and gof, where $f(x)=x^{2}-2$ and $g(x)=x+4$.
d) What equivalence relation corresponds to the partitions $\{\{1,3\},\{2\}\}$
e) Determine the coefficient of $x^{5} y^{10} z^{10}$ in $(x-7 y+3 z)^{25}$
f) A group of 8 scientists is composed of 5-psychologists and 3-sociologists, In how many ways can a committee of 5 be formed that has 3-psychologists and 2-sociologists.
g) Use substitution method to solve $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-2)+1$, where $\mathrm{T}(1)=1$.
h) Solve the following recurrence relations using generating functions. $a_{n}-6 a_{n-1}=0$ for $n>=1$ and $a_{0}=1$.
i) Define Euler's Path and Euler Circuit.
j) What is circuit rank? G is a connected graph with \mathbf{n} vertices and \mathbf{m} edges then find circuit rank of G.

PART- B

(50 Marks)
2. Obtain the PDNF and PCNF of the following formulas.

$$
\begin{equation*}
\text { P V }(\sim \mathrm{P}->(\mathrm{Q} V(\sim \mathrm{Q}->\mathrm{R}))) \tag{10}
\end{equation*}
$$

OR

3.a) Show that G V H can be derived from the premises $B \wedge C,(B \leftrightarrow C)->(H V G)$.
b) Derive $\mathrm{P}->(\mathrm{Q}->\mathrm{R}), \mathrm{Q}->(\mathrm{R}->\mathrm{S})=>\mathrm{P}->(\mathrm{Q}->\mathrm{S})$ (Use CP rule if necessary).
4.a) Let G be the set of real numbers not equal to -1 and * be defined by $a * b=a+b+a b$. Prove that $\left\langle G,{ }^{*}\right\rangle$ is an abelian group.
b) Define equivalence relation. Show that $R=\{(x, y) / x \equiv y \bmod m\}$ is equivalence relation.

> www . ManaResults. Co. in
5.a) Let $f: R \rightarrow R$ be defined by

$$
f(x)=\left\{\begin{array}{c}
x+7 \text { for } x \leq 0 \\
-2 x+5 \text { for } 0<x<3 \\
x-1 \text { for } x \geq 3
\end{array}\right.
$$

Find (i) $f^{-1}(-10)$ (ii) f^{-1} (8) (iii) f^{-1} (4) (iv) $f^{-1}(6)$.
b) Draw the Hasse diagram for the divisibility on the set $\{1,2,3,4,8,16,28,32,64\}$. [5+5]
6.a) 3 Americans, 3 Mexicans, 3 Canadians are to be seated in a row. How many ways can they be seated so that, no 3 countrymen sit together?
b) How many ways can we distribute 14 indistinguishable balls in 4 numbered boxes so that each box is non empty.

OR

7.a) In how many ways can the letters $\{4 . a, 3 . b, 2 . c\}$ be arranged so that all the letters of the same kind are not in a single block?
b) Expand the multinomial $(x+y+z)^{6}$
8. Solve the recurrence relation $a_{n}+a_{n-1}-8 a_{n-2}-12 a_{n-3}=0, n \geq 3$ with $a_{0}=1, a_{1}=5, a_{2}=1$.

OR

9. Solve the following recurrence relations for a particular solution.
$a_{n}-5 a_{n-1}+8 a_{n-2}-4 a_{n-3}=n 2^{n}$.
10.a) Apply Kruskal's algorithm to determine a minimal spanning tree for the weighted graph shown below:

b) Show that if a planar graph is self-dual, then $|E|=2|V|-2$.
11.a) Explain Prim's algorithm with example.
b) Use Euler's formula to show that the graph $\mathrm{K}_{3,3}$ is non-planar.
