Code No: 113BP

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, March - 2017

DATA STRUCTURES (Common to CSE, IT)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks: Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

PART- A.

(25 Marks) 1.a) Compare singly and doubly linked linear lists. Write a recursive function in C to compute xⁿ where x and n are integers. [3] b) c) Give the ADT specification of a stack. d) Write a C function for popping an integer item from a stack. Assume that stack e) is implemented as an array. Give the ADT specification of a max priority queue. f) Write a recursive function in C for the inorder traversal of a binary tree. Assume that binary tree is already created. Assume linked representation for binary tree. g) Sort the following list of integers in ascending order using insertion sort: 11, 41, 35, 10, -11 (T) ::: ·f21···· Show the contents of the list at the end of each pass. h) What is meant by a collision in hashing? List any two methods used for resolving collisions in hashing? [3] Define a Red-Black tree. i) [2] Write a function in C that returns the location of the smallest integer in a binary j) search tree of integers. Assume that binary search tree of integers is already.

PART-B

created. Assume linked representation for the binary search tree.

(**50** Marks)

2.a) Define the space complexity of a program.

Write a C function for deleting an integer element from doubly linked list of integer elements. Assume that the doubly linked list of integers is already created.

[5+5]

OR

- 3.a) Explain with an example the linked representation of a sparse matrix.
- b) Define the asymptotic notations (Big Oh, Omega and Theta) used in algorithm. analysis: [5+5]
 - 4.a) Write a C function for deleting an integer element from a circular queue of integers. Assume array representation for the circular queue.
 - b) Explain with an example how recursion is implemented using stack. [5+5]

OR ...

5;a) b)	Show how to represent a deque (double ended queue) in a singly linked list: Write functions in C which insert and delete integer elements at either end of the above deque. [5+5]					
6.a) b)	Give an example for a threaded binary tree. Write a non recursive procedure for the preorder traversal of a binary tree. Assume that the binary tree of elements is already created: [5±5] OR					
7.a) b)	Give an example for the adjacency list representation of a graph. Write a procedure for the bfs of a graph. [5+5]					
	Write a recursive binary search function in C to search for an integer key in a sorted (ascending order) array of integers. Compare the performance of binary search with linear search. OR Write quick sort algorithm for sorting a list of integers in ascending order.					2.1
b) 10:a) b)	What is the time con Define an AVL tree. Write a non recursive tree of integers. Assi	Give an examp e function in C	k sort algorithm le for it. to search for an ary search tree	in the worst case	e? [5+5]	174 g
11 a) b)	What is a bottom-up Write a procedure fo		OR ement into a B-	tree.	[5+5]	
		00	O00			
	26	201		2.C	ZS	
26	Takey Takey				25	
	Z.				26	
		26	26	26	26	