Max. Marks: 75

Time: 3 Hours

Code No: 113BQ LIJAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, March - 2017 DIGITAL LOGIC DESIGN AND COMPUTER ORGANIZATION

(Information Technology)

200		-8001 F.T.	***	4. 6846	* h = * * * * * * * * * * * * * * * * *						
Note:	This question paper contains two parts A and B.				12112 1111 1						
	Part A is compulsory which carries 25 marks. Answer all questions in Part A.										
	Part B consists of 5 Units. Answer any one full question from each unit.										
	Each question carries 10 marks and may have a, b, c as sub questions.										
275	475 gm	A 100	PART-A								
	1	5 5	PART-A		(25 Marks)						
1.a)	Solve the Hexadecimal	l number 2	2456 into decimal numb		[2]						
b)	Describe the steps involved in execution of a program. [3]										
c)	List all the basic logic gates and universal logic gates. [2]										
	Cive the communican between expension and saynahranous counter [3]										
d) (e) f)	Describe conditional ju		[2]								
£.	Define about little-end			2	:.L31:						
	Describe paged segment	[2]									
g)	1 0	[3]									
h)	Explain the micro prog										
i)	List the advantages of				[2]						
])	Write short notes on du		s cycle confinanti.	×	[3]						
1		1		rear fort	i i						
PART-B											
2)	D' (1	1	C 1' '4 1		(50 Marks)						
2.a)	Discuss the operational concepts of a digital computer and explain the various										
4.	types of computers and										
b)	Calculate the following	g to binary	v and then to gray code, v) 1257 ₁₀ (v) 2239 ₁₀ .		::[5+5]						
S S?	(i) 1001_{16} (ii) 7623_8 (ii	1): IZ34 ₈ (1			[C#C]::						
			OR	1.1.0							
3.a)			a floating point binary n		bits the						
			16 bits and the expone	nt has 8 bits.	r						
b)	Differentiate between	RISC and	CISC architectures.		[5+5]						
7 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		100 100	The second	ATTR (1470)							
4.a)			allel in pårallel out shift		1va+1 *****						
b)	Solve the expression Y	$Y = A\bar{B} + \bar{A}$	B using only 2 input NA	AND gates.	[5+5]						
			OR								
5.a)	Solve the multi-level N	NAND circ	cuit for the following ex	pression							
	$F(A,B,C,D) = (A\overline{B} + C\overline{B})$)E+BC(A+B)								
b)	Design a PAL for the	following	equation, $F = \bar{a} b c + \bar{b} c$	+ ab.	[5+5]						
	1	has 'm'	Andrew Str	time time	d2222 *******						
6.a)	With a neat diagram ex	xplain the	floating point multiplic	ation algorithr	n.						
b)		-	resent in IA-32 Pentiun		[5+5]						
٥/		8 r	OR	1							
7.a)	What is a straight line	sequencin		xample.							
h)	What is a straight line sequencing and explain with an example. Write the Booth's algorithm for multiplication of signed-2's complement										
10/	numbers.	a. S. Hilliam	TOT MANAGEMENT OF		[5+5]						
	namous.				[~.~]						

i.		Explain the organize Microprogram. Explain in detail the	e memory interle	eaving.	conditional branc	hing in the .: [5+5]	26
140	9.a) b)	Give the timing dia Show the control so has the three-bus so	igram of a memo	ch-on-Negative i	instruction for a pr		26
	10.a) b)		ram explain the trequest and ack	n of interrupt pr		ng	
	,	Explain in detail the Explain the concep		OR	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		
			0	0O00			
1	26				226	26	100 - 100 -
T.		26	26			26	
5 -2 ⁷⁷ 2 -2 -2 2 -2 -2 2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	26	25	STEEL LESS STEEL STEEL STEEL STEEL			26	
1.400 3001 3001			urog uro pri Imm Mace and			25	And the
i din		And Design		æs			
						25	

www.ManaResults.co.in