Code No: 114CT JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, May - 2016 DESIGN AND ANALYSIS OF ALGORITHMS (Information Technology)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.Part A is compulsory which carries 25 marks. Answer all questions in Part A.Part B consists of 5 Units. Answer any one full question from each unit.Each question carries 10 marks and may have a, b, c as sub questions.

PART - A (25 Marks)

1.	Write short notes on the following:	
	a) Connected components.	[2]
	b) Greedy general method.	[3]
	c) Time complexity of job sequencing with deadline problem.	[2]
	d) Advantages of dynamic programming.	[3]
	e) Concept of all pairs shortest path problem.	[2]
	f) Concept of backtracking.	[3]
	g) Hamiltonian cycles.	[2]
	h) LC branch and bound.	[3]
	i) Concept of satisfiability.	[2]
	j) P and NP class problems.	[3]

PART - B

(50 Marks)

2.a) Explain union and find operations on sets.

b) Describe the union algorithm with weighted rule. [5+5]

OR

- 3. Write an algorithm to implement quick sort and derive its time complexity. [10]
- 4. Explain Dijkstra's algorithm for single shortest path problem with an example. [10]

OR

5.a) Find the minimum cost spanning tree for the following graph using Kruskal's algorithm. 25

b) Distinguish between Wim' Mathras Resouthes.co.in [5+5]

6. Explain dynamic programming approach to solve 0/1 knapsack problem and give time complexity. [10]

OR

- 7. Using algorithm OBST compute c(i,j) $0 \le i \le j \le 4$ for the identifier set $(a_1,a_2,a_3,a_4) = (do, if, int, while)$ with p(1:4) = (3,3,1,1) and q(0:4) = (2,3,1,1,1). [10]
- 8.a) Explain N-Queens problem in brief.
 - b) Discuss the graph coloring algorithm.

OR

9. The edge length of a directed graph (adjacency matrix) are given below. Use branch and bound method to find optimal tour of travelling salesperson problem.

[10]

[5+5]

2	20	30	10	11]
15	α	16	4	2
3	5	α	2	4
19	6	18	α	3
16	4	7	16	α

- 10.a) Explain the FIFO Branch and Bound in detail.b) Write an algorithm to implement Non deterministic search. [5
 - b) Write an algorithm to implement Non deterministic search. [5+5] OR
- 11. Explain about cook's theorem in detail. [10]

--00000--

www.ManaResults.co.in