JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech II Year II Semester Examinations, November/December - 2015 DESIGN AND ANALYSIS OF ALGORITHMS
(Information Technology)
Time: 3 Hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

1.a) Explain the properties of an algorithm.
b) Write an algorithm of weighted union. [3M]
[2M]
c) What are the applications of minimum cost spanning tree. [2M]
d) Write an algorithm of greedy knapsack. [3M]
e) Explain how dynamic programming is useful to solve 0/1 Knapsack. [2M]
f) Explain the importance of all pairs shortest path problem. [3M]
g) Find the sum of sets for the following set of integers by fixed tuple. $\{1,2,3,5,6,7,8,9,10\}$ for $W=8$.
[2M]
h) What is meant by branch and bound.
i) Write a nondeterministic search algorithm.
j) Distinguish between P and NP.

PART-B

2.a) Solve the recurrence: $T(n)=4 T(n / 2)+n$, Where $n \geq 1$ and is a power of 2 .
b) Write an algorithm for the finding the GCD of two numbers and also find the time complexity of the same.

OR

3.a) Write an algorithm of Fibonacci of n given numbers and also find its Complexity.
b) Explain the asymptotic notations with an example.
4. Explain the prim's and Kruskal's algorithms.

OR

5.a) Write a control abstraction for the subset parading using greedy method.
b) What is the solution generated by using job sequencing with deadlines when $\mathrm{n}=7$, (P1, P2, P3P7) $=(3,5,20,18,1,6,30)$, and $(\mathrm{d} 1, \mathrm{~d} 2, \ldots . . \mathrm{d} 7)=(1,3,4,3,2,1,2)$.
6.a) Solve the travelling sales person problem by using the dynamic programming.

b) Write an algorithm of OBST.

OR

7. Consider 4 elements $\mathrm{al}<\mathrm{a} 2<\mathrm{a} 3<\mathrm{a} 4$ with
$\mathrm{q}(0)=\frac{1}{8}, \mathrm{q}(1)=\frac{1}{16}, \mathrm{q}(2)=\mathrm{q}(3)=\mathrm{q}(4)=\frac{1}{16}: \mathrm{p}(1)=\frac{1}{4}, \mathrm{p}(2)=\frac{1}{8}, \mathrm{p}(3)=\mathrm{p}(4)=\frac{1}{16}$.
Construct the table of values of $\mathrm{W}(\mathrm{i}, \mathrm{j}), \mathrm{R}(\mathrm{i}, \mathrm{j})$ and $\mathrm{C}(\mathrm{i}, \mathrm{j})$ computed by the algorithm to compute the roots of optimal sub trees.
8.a) Draw the portion of the state space tree generated by LCBB for the following knapsack instances: $\mathrm{n}=5,\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{P}_{5}\right)=(10,15,6,8,4)$,

$$
\begin{equation*}
\left(W_{1}, W_{2}, W_{3}, W_{4}, W_{5}\right)=(4,6,3,4,2) \text { and } m=12 \tag{5+5}
\end{equation*}
$$

b) Explain in detail how the technique of backtracking can be applied to solve the 8 -queens problem.

OR

9. Consider the traveling sales person instance defined by the cost matrix

$$
\left[\begin{array}{lllll}
\infty & 7 & 3 & 12 & 8 \\
3 & \infty & 6 & 14 & 9 \\
5 & 8 & \infty & 6 & 18 \\
9 & 3 & 5 & \infty & 11 \\
18 & 14 & 9 & 8 & \infty
\end{array}\right]
$$

a) Obtain the reduced cost matrix
b) Obtain the state space tree that will be generated by LCBB. Label each node by its \hat{C} value. Write out the reduced matrices corresponding to each of these nodes.
[5+5]
10. Explain 0/1 knapsack problem and cook's theorem.

OR

11.a) Show that the Hamiltonian cycle problem is reducible to the traveling sales person problem (Choose either directed or undirected graphs for both problems).
b) Explain non-deterministic algorithms.

