Code No: 123BN

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, April/May - 2018 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

(Common to CSE, IT)

Time: 3 Hours

Note: This question paper contains two parts A and B.Part A is compulsory which carries 25 marks. Answer all questions in Part A.Part B consists of 5 Units. Answer any one full question from each unit.Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

1.a)	Find the negations of the following quantified statements:	
	$\forall x, \exists y, \left[\left(p(x, y) \land q(x, y) \right) r(x, y) \right]$	[2]
b)	Construct a truth table to show that $(p \land q) \rightarrow p$ is a tautology.	[3]
c)	Let $X = \{1, 2, 3, 4, 5, 6\}$ and R be a relation defined as $(x, y) \in R$ if and only if	f $x - y$ is
	divisible by 3. Find the elements of relation of R.	[2]
d)	If 'a' is a generator of a cyclic group G, then show that a ⁻¹ is also a generator of (G. [3]
e)	Find how many different words that can be formed with the letters in t	the word
	"MATHEMATICS"?	[2]
f)	What is pigeon hole principle?	[3]
g)	What is homogeneous recurrence relation?	[2]
h)	Find the number of non-negative integer solutions of the equation $x_1 + x_2 + x_3 = 1$	1.[3]
i)	What is chromatic numbers?	[2]
j)	Define Euler's circuit and Give an example.	[3]

PART-B

2.a) Verify the validity of the following arguments.
"Every living thing is a plant or an animal. Logu's dog is alive and it is not a plant. All animals have heart. Therefore Logu's dog has a heart."
b) Find the formulas in Disjunctive Normal Form equivalent to the following well formed formulas

$$(\neg R) \to (((P \lor Q) \to R) \to \neg Q)$$

OR

3. Without using truth tables prove that $((P \lor Q) \neg (\neg P (\neg Q \lor \neg R))) \lor (\neg P \neg Q) \lor (\neg Q \neg R) \text{ is a tautology.} [10]$

www.manaresults.co.in

Max. Marks: 75

(25 Marks)

[5+5]

- 4.a) Let $A = \{a, b, c\}$ be a set and relation R on A is as $= \{(a, a), (a, b), (b, c), (c, c)\}$. Is R. i) Reflexive ii) Symmetric iii) Transitive.
 - b) Prove that $f^{-1} \cdot g^{-1} = (g \cdot f)^{-1}$, where $f: Q \to Q$ such that f(x) = 2x and $g: Q \to Q$ Such that g(x) = x + 2 are two functions. [5+5]

OR

- 5.a) Prove that the intersection of any two subgroups of a group G is again subgroup of G.
- b) In a lattice (L, \leq , \land , \lor) state and prove the laws indempotent, commutative, association and absorption. [5+5]
- 6.a) Find the number of integers between 1 and 250 that are divisible by any of the integers 2, 3 and 6.
- b) Find the coefficient of $x^9 y^3$ in the expansion of $(2x 3y)^{12}$. [5+5]

OR

- 7.a) How many bit strings of length 10 contain:i) At most four 1's ii) At least four 1's iii) Exactly four 1's.
 - b) There are 40 computer programmers for a job. 25 know Java, 28 know Oracle and 7 know neither language. Using principle of inclusion exclusion find how many know both languages.
- 8.a) Find a generating function for the recurrence relation $a_n - a_{n-1} + 6a_{n-2} = 0$ for $n \ge 2$
 - b) Express Fibonacci sequence of numbers 1, 1, 2, 3, 5, 8, 13, 21, 34,... in terms of general expression for the rth number a_r and generating function. [5+5]
 OR
- 9.a) Find the number of integer solutions of the equation $x_1 + x_2 + x_3 + x_4 + x_5 = 30$ Under the constraints $x_i \ge 0$ for all i = 1, 2, 3, 4, 5 and further x_2 is even and x_3 is odd.
- b) Solve the recurrence relation $a_n 6a_{n-1} + 9a_{n-2} = 0$ for $n \ge 2$. [5+5]
- 10.a) Show that a simple complete digraph with n nodes has the maximum number of edges n(n-1). Assuming that there are no loops.
 - b) State and explain graph coloring problem. Give its applications. [5+5]

OR

11.a) Find the minimum spanning tree by using kruskal's algorithm.

b) Write short notes on DFS and BFS.

[5+5]

www.manaresults.co.in