Code No: 123BN

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, May/June - 2019 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CSE, IT)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

(25 Marks)

[2]

- 1.a) Write converse and inverse for the statement "If Sun rises in the east then 3*7=98".
 - b) Express $(P \rightarrow Q) \land (P \leftrightarrow R)$ in terms of \land , \lor , \sim only. [3]
 - c) Define LUB and GLB of a lattice and give examples for each. [2]
 - d) Explain equivalence relation. Give suitable examples for a relation which is not equivalence relation. [3]
 - e) In how many ways can 6 boys and 5 girls sit in a row? [2]
 - f) Calculate the number of binary numbers with 9 one's and 5 zero's. [3]
 - g) Write the characteristic equation for the following recurrence relation $a_n 4a_{n-4} = 0$, $n \ge 4$ and solve it. [2]
 - h) Find the generating function for the sequence $A = \{a_r\}$ where

$$a_{r} = \begin{cases} 2, & \text{if } 0 \le r \le 3\\ 4, & \text{if } 4 \le r \le 5\\ 0, & \text{if } r \ge 6 \end{cases}$$
 [3]

- i) Give a general formula for Chromatic number of Cycle graph C_n . [2]
- j) Find the Euler Path in the following graph 1. [3]

Graph: 1

PART-B

(50 Marks)

- 2.a) Obtain principal conjunctive normal form (PCNF) for the formula ($\sim p \rightarrow r$) \land (q \leftrightarrow p).
- b) Show that the following is inconsistent $P \rightarrow Q$, $R \rightarrow S$, $P \lor R$, $\sim (Q \lor S)$. [5+5]

OR

- 3.a) Using indirect proof, derive $P \rightarrow \sim S$ from $P \rightarrow Q \vee R$, $Q \rightarrow \sim P$, $S \rightarrow \sim R$, P.
 - b) Show that $R \to (S \to Q)$, $\sim P \lor R$ and $S \Rightarrow P \to Q$. [5+5]
- 4.a) Explain properties of binary relations with examples.
 - b) Draw the Hasse diagram for the partial ordering $\{(A, B): A \le B\}$ on the power set e(S) where $S=\{a, b, c\}$ and \le is subset relation. [5+5]

OR

- 5.a) Draw the Hasse diagram for the divisibility on the set $\{1,2,3,6,12,24,36,48,96\}$.
 - b) Define equivalence relation. Show that the relation *equal* on set of integers is equivalence relation. [5+5]

- 6.a) Write the 3-combinations and 3-permutations of {3.a, 2.b, 1.c, 3.d}.
 - b) In how many ways can a committee of 5 teachers and 4 students be selected from 9 teachers and 15 students such that teacher A refuses if student B is in the committee.

[5+5]

OR

- 7.a) Find the number of non negative integral solution for the equation $X_1+X_2+X_3+X_4=50$, where $X_1>=2$, $X_2>=4$, $X_3>=-3$, $X_4>=7$
- b) Expand the multinomial $(X_1+X_2+X_3+X_4)^4$.

[5+5]

- 8.a) Find the solution for the Fibonacci series $a_n=a_{n-1}+a_{n-2}$, $n\ge 2$ and $a_0=1$, $a_1=1$.
 - b) Using substitution method, find the solution for $a_n=a_{n-1}+1/n(n-1)$ where $a_0=2$. [5+5]

ΛR

- 9.a) Solve the recurrence relation a_n $7a_{n-1}$ + $16a_{n-2}$ $12a_{n-3}$ = 0 for $n \ge 3$ with the initial conditions $a_0=1, a_1=4, and a_2=8.$
 - b) Find the solution for $a_n 3a_{n-1} 4a_{n-2} = 0$ for $n \ge 2$ and, $a_0 = a_1 = 1$. [5+5]
- 10.a) Find the degree of each region in the following planar graph 2.

Graph: 2

b) Show that the complete bi-partite graph $K_{3,3}$ is not planar graph.

[5+5]

OR

11.a) Find the dual of the following graph 3.

b) Define spanning tree. Apply Prim's algorithm to find minimum spanning tree on the following weighted graph 4. [5+5]

www.manarestiats.co.in