Code No: 123BN JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CSE, IT)

Time: 3 Hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A (25 Marks)

R15

Max. Marks: 75

(50 Marks)

1.a)	Give the truth table for the propositional formula	
	$(P \leftrightarrow \sim Q) \rightarrow (P \land Q)$	[2]
b)	Write the sentence "It is not true that all roads lead to Rome" in the symbolic f	form. [3]
c)	Define lattice.	[2]
d)	What is a monoid?	[3]
e)	How many words of three distinct letters can be formed from CAKE?	[2]
f)	Give the disjunctive rule for counting problem.	[3]
g)	What is the closed form expression of the sequence $a_n = 9.5^n$, $n \ge 0$?	[2]
h)	Find the coefficient of $x^9 in (1 + x^3 + x^8)^{10}$.	[3]
i)	What are the advantages of adjacency matrix representation?	[2]
j)	Define a spanning tree.	[3]

PART - B

- 2.a) Obtain the principal disjunctive normal form of the following formula
 P ∨ (¬ P → (Q ∨ (¬Q → R)))

 b) Varify whather the proposition ((P → Q)) = 0.000 ((P → Q)) = 0.000 ((P → Q)) = 0.000 ((P → Q)))
 - b) Verify whether the proposition $((P \lor \neg q) \rightarrow r) \leftrightarrow s \lor \neg (((P \lor \neg q) \rightarrow r) \leftrightarrow s)$. [5+5] OR
- 3.a) Show that $(\forall x)(p(x) \land Q(x)) \rightleftharpoons ((\forall x)(p(x) \land (\forall x)(Q(x))))$ is a logically valid statement.
 - b) Show the following using the automatic theorem. i) $P \Rightarrow (\neg P \rightarrow Q)$ ii) $P \land \neg P \land Q \Rightarrow R$ [5+5]
- 4.a) Show that the functions $f: R \to (1, \infty)$ and $g: (1, \infty) \to R$ defined by $f(x) = 3^{2x} + 1$, $g(x) = \frac{1}{2} \log_3(x - 1)$ are inverses.
 - b) Prove that the transitive closure R^+ of a relation R on a set A is the smallest transitive relation on A containing R. [5+5]

OR

- 5.a) Let G is a group, $a \in G$. If 0(a)=n and m/n then prove that $0(a^m) = \frac{n}{2}$.
 - b) Let S is a semi group. If for all $x y \in s$, $x^2 y = yx^2$ prove that S is an abelian group. **WWW**. **ManaResults**. **Co**. in [5+5]

- 6.a) How many ways are there to distribute 12 different books among 15 people if no person is to receive more than one book?
 - b) How many different outcomes are possible from tossing 12 similar dice? [5+5]

OR

7.a) Find the mid-term of $\left(2x - \frac{1}{3x}\right)^{10}$.

b) Find the term which contains
$$x^{11}$$
 and y^4 in the expansion of $(2x^3 + 3xy^2 + Z^2)^6$. [5+5]

- 8.a) Solve $a_{n+2} 6a_{n+1} + 9a_n = 3 \cdot 2^n + 7 \cdot 3^n$ for $n \ge 0$ Where $a_0 = 1, a_1 = 4$.
- b) Solve the following recurrence relation by substitution $a_n = a_{n-1} + 3n^2 + 3n + 1$ Where $a_0 = 1$. [5+5]

OR

- 9.a) Solve the recurrence relation $a_{n+2}^2 5a_{n+1}^2 + 6a_n^2 = 7n$ for $n \le 0$, given $a_0 = a_1$.
 - b) Find a general expression for a_n using generating functions $a_n - 7a_{n-1} + 16a_{n-2} - 12a_{n-3} = 0, n \ge 3.$ [5+5]
- 10.a) Let G be the non directed graph of order 9 such that each vertex has degree 5 or 6. Prove that atleast 5 vertices have degree 6 or atleast 6 vertices have degree 5.
 - b) Determine the number of edges in: i) K_n ii) $K_{m,n}$ iii) P_n .

[5+5]

OR

11.a) Using depth first search method, determine the spanning tree T for the following graph with e as the root of T.

b) Give an example graph which is Hamiltonian but not Eulerian. [5+5]

---00000----

www.ManaResults.co.in