Code No: 123BP

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 DATA STRUCTURES

	(Common to CSE, IT)	
Time:	3 Hours Max. Marks	: 75
Note:	This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.	
	PART- A	
1.a)	(25 Mar What is linked list? Write advantages of doubly linked list over singly linked list	
b)	What is recursion? Give the properties of a recursive definition of an algorithm	n.
c) d)	What is a stack? List the applications of stack. Show the detailed contents of stack to evaluate the given postfix expression. $\{1\ 2\ 3+*\ 3\ 2\ 1-+*\}$	[3] [2] [3]
e)	Define a graph. List different graph traversal techniques.	[2]
f) g) h) i) j)	What are binary trees? Mention different types of binary trees with example. What is hashing? What is sorting? What is searching? Define AVL tree? Give example. What is B-tree of order m? Draw a B-tree of order 3.	[3] [2] [3] [2] [3]
	PART-B	
	(50 Ma	rks)
2.a)	What is amortized complexity? Explain different methods to arrive at amortize costs for operations.	ed
b)	Write a C program to implement insertion to the immediate left of the K th node singly linked list. [5+	
2	OR	, •
3.	Given an ordered linked list whose node is represented by 'key' as informal and 'next' as link field. Write a C program to implement deleting number nodes (consecutive) whose 'key' values are greater than or equal to ' K_{min} ' less than ' K_{max} '.	r of and
4.a) b)	Write a C program to implement multiple stacks using single array. Convert the infix expression a $/$ b $-$ c $+$ d $*$ e $-$ a $*$ c into postfix expression a	and
	trace that postfix expression for given data $a = 6$, $b = 3$, $c = 1$, $d = 2$, $e = 4.[5+5]$	5]

OR

6.a) Construct a binary tree having the following traversal sequences: Preorder traversal: A B C D E F G H I Inorder traversal: BCAEDGHFI b) Implement Depth First Search (DFS) algorithm. [5+5]OR 7.aDefine a Max Heap. Construct a max heap for the following: {12, 15, 9, 8, 10, 18, 7, 20, 25} b) What is a graph? Explain various representations of graphs. [5+5]8.a) Write an algorithm for Heap sort. Apply selection sort on the following elements: b) {21, 11, 5, 78, 49, 54, 72, 88} [5+5]OR 9. What is collision? Explain different collision resolution techniques with examples. [10] Build an AVL tree with the following values: {15, 20, 24, 10, 13, 7, 30, 36, 25, 42, 29} b) Write Knuth-Morris-Pratt pattern matching algorithm. [5+5]OR 11. Write short notes on: a) Red-Black trees [3+3+4]b) splay trees c) b-trees.

---00000---