Code No: 123BP

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, November/December - 2016 DATA STRUCTURES

(Common to CSE, IT)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit.
Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks)
1.a) What is linked list? Write advantages of doubly linked list over singly linked list.
b) What is recursion? Give the properties of a recursive definition of an algorithm.
c) What is a stack? List the applications of stack.
d) Show the detailed contents of stack to evaluate the given postfix expression.

$$
\begin{equation*}
\{123+* 321-+*\} \tag{2}
\end{equation*}
$$

e) Define a graph. List different graph traversal techniques.
f) What are binary trees? Mention different types of binary trees with example. [3]
g) What is hashing? [2]
h) What is sorting? What is searching? [3]
i) Define AVL tree? Give example. [2]
j) What is B-tree of order m ? Draw a B-tree of order 3. [3]

PART-B

(50 Marks)
2.a) What is amortized complexity? Explain different methods to arrive at amortized costs for operations.
b) Write a C program to implement insertion to the immediate left of the $\mathrm{K}^{\text {th }}$ node in singly linked list.
[5+5]

OR

3. Given an ordered linked list whose node is represented by 'key' as information and 'next' as link field. Write a C program to implement deleting number of nodes (consecutive) whose ' key ' values are greater than or equal to ' $\mathrm{K}_{\text {min }}$ ' and less than ' $\mathrm{K}_{\mathrm{max}}$ '.
4.a) Write a C program to implement multiple stacks using single array.
b) Convert the infix expression a/b-c+d*e-a*c into postfix expression and trace that postfix expression for given data $a=6, b=3, c=1, d=2, e=4 .[5+5]$

OR
6.a) Construct a binary tree having the following traversal sequences:

Preorder traversal: A B C D EF G H I
Inorder traversal: B C A E D G H F I
b) Implement Depth First Search (DFS) algorithm.

OR

7.a) Define a Max Heap. Construct a max heap for the following: $\{12,15,9,8,10,18,7,20,25\}$
b) What is a graph? Explain various representations of graphs.
8.a) Write an algorithm for Heap sort.
b) Apply selection sort on the following elements: $\{21,11,5,78,49,54,72,88\}$

OR

9. What is collision? Explain different collision resolution techniques with examples.
10.a) Build an AVL tree with the following values:
$\{15,20,24,10,13,7,30,36,25,42,29\}$
b) Write Knuth-Morris-Pratt pattern matching algorithm.

OR

11. Write short notes on:
a) Red-Black trees
b) splay trees
c) b-trees.
