Code No: 123BQ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, May/June - 2019 DIGITAL LOGIC DESIGN AND COMPUTER ORGANIZATION (Information Technology)

Time: 3 Hours

Max. Marks: 75

()E Manlea)

R15

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

		(25 Marks)
1.a)	Explain about Supercomputers and Grid computers.	[2]
b)	Convert the number from $(102)_6$ to $()_{8}$.	[3]
c)	Draw the JK Flip-flop circuit and write truth table of it.	[2]
d)	Explain about multiplexers with a neat sketch.	[3]
e)	Explain about byte addressability.	[2]
f)	Explain about memory operations.	[3]
g)	Explain about the basic structure for data processing.	[2]
h)	Explain about Flash memory.	[3]
i)	What is Vectored Interrupt?	[2]
j)	Explain about PCI bus.	[3]

PART - B

2.a) Explain about the performance evaluation of computers. b) Compare signed and unsigned binary numbers with table. [5+5]

OR

- Convert the following pairs of decimal numbers to 5-bit 2's-complement numbers, then 3.a) perform addition and subtraction on each pair. Indicate whether or not overflow occurs for each case. i) 7 and 13 ii) -12 and 9
 - b) Explain about Floating-Point Representation with an example. [5+5]
- Simplify the following Boolean function F, together with the don't-care conditions d, 4.a) and then express the simplified function in sum-of-min terms form. $F(x,y,z) = \sum_{x,y,z} 0, 1, 4, 5, 6)d(x,y,z) = \sum_{x,y,z} (2, 3, 7)$
 - Explain about Shift Registers with an example. [5+5] b)
 - OR
- Design a combinational circuit that compares two 4-bit numbers to check if they are 5.a) equal. The circuit output is equal to 1 if the two numbers are equal and 0 otherwise.
 - b) Explain about ripple counter and ring counters. [5+5]

www.manaresults.co.in

(50 Marks)

6.a)	Derive an algorithm in flowchart form for adding and subtracting two fixed-poin numbers when negative numbers are in signed-1's complement representation.	nt binary
b)	Design a Floating-point addition-subtraction unit.	[5+5]
	OR	
7.a)	Discuss about Instructions and Instruction Sequencing.	
b)	Explain about different types of Instruction Formats.	[5+5]
8.a)	Explain about multiple bus organization with a neat sketch.	
b)	Explain about Microprogrammed control unit organization.	[5+5]
	OR	
9.a)	Explain about the internal organization of memory chips in detail.	
b)	Discuss about different mapping techniques used in cache memory.	[5+5]
10.a)	Discuss about accessing I/O devices.	
b)	Explain about interrupt hardware and enabling and disabling interrupts.	[5+5]
	OR	
11.a)	Explain about DMA interface.	
b)	Explain about input interface circuit.	[5+5]

---00000----