Code No: 123BQ

R15

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, May/June - 2019

 DIGITAL LOGIC DESIGN AND COMPUTER ORGANIZATION (Information Technology)Time: 3 Hours
Max. Marks: 75

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

1.a) Explain about Supercomputers and Grid computers.
(25 Marks)
b) Convert the number from $(102)_{6}$ to $(--)_{8}$.
c) Draw the JK Flip-flop circuit and write truth table of it.
d) Explain about multiplexers with a neat sketch.
e) Explain about byte addressability.
f) Explain about memory operations.
g) Explain about the basic structure for data processing.
h) Explain about Flash memory.
i) What is Vectored Interrupt?
j) Explain about PCI bus.

PART - B

(50 Marks)
2.a) Explain about the performance evaluation of computers.
b) Compare signed and unsigned binary numbers with table.

OR

3.a) Convert the following pairs of decimal numbers to 5-bit 2's-complement numbers, then perform addition and subtraction on each pair. Indicate whether or not overflow occurs for each case.
i) 7 and 13
ii) -12 and 9
b) Explain about Floating-Point Representation with an example.
4.a) Simplify the following Boolean function F, together with the don't-care conditions d, and then express the simplified function in sum-of-min terms form.
$\left.\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum 0,1,4,5,6\right) \mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(2,3,7)$
b) Explain about Shift Registers with an example.

OR

5.a) Design a combinational circuit that compares two 4-bit numbers to check if they are equal. The circuit output is equal to 1 if the two numbers are equal and 0 otherwise.
b) Explain about ripple counter and ring counters.
6.a) Derive an algorithm in flowchart form for adding and subtracting two fixed-point binary numbers when negative numbers are in signed-1's complement representation.
b) Design a Floating-point addition-subtraction unit.

OR

7.a) Discuss about Instructions and Instruction Sequencing.
b) Explain about different types of Instruction Formats.
8.a) Explain about multiple bus organization with a neat sketch.
b) Explain about Microprogrammed control unit organization.

OR
9.a) Explain about the internal organization of memory chips in detail.
b) Discuss about different mapping techniques used in cache memory.
10.a) Discuss about accessing I/O devices.
b) Explain about interrupt hardware and enabling and disabling interrupts.

OR
11.a) Explain about DMA interface.
b) Explain about input interface circuit.

