JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year II Semester Examinations, May - 2017 DESIGN AND ANALYSIS OF ALGORITHMS
 (Information Technology)

Time: 3 Hours

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit.
Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

> PART - A
(25 Marks)

1. Write short notes on the following.
a) Space complexity.
b) Bi-connected components.
c) Single source shortest path problem.
d) Concept of job sequencing problem.
e) Multistage graphs.
f) Reliability design.
g) Graph coloring.
h) Branch and bound.[3]
i) Clique decision problem. [2]
j) Cook's theorem.

PART - B

(50 Marks)
2.a) Explain UNION algorithm with example.
b) Write short notes on amortized complexity.

OR

3. Explain about Strassen's matrix multiplication and derive time complexity. [10]
4. Discuss Prim's and kruskal's algorithms.

OR

5.a) Discuss the general method of greedy approach.
b) Find the optimal solution of greedy knapsack where $n=3,\left(p_{1}, p_{2}, p_{3}\right)=(30,21,18)$, $\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}\right)=(18,15,10)$ and knapsack capacity $\mathrm{m}=20$.
6. Explain all pairs shortest paths algorithm.

OR

7. Explain traveling sales person problem and discuss its time complexity.
8.a) Write short notes on backtracking general method.
b) Solve the following sum of subsets problem using state space tree. $\mathrm{W}=(7,11,13,24)$ and $\mathrm{m}=31$.
[5+5]
OR
8. Solve the following knapsack problem using branch and bound technique. $\mathrm{n}=4, \quad\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{p}_{4}\right)=(10,10,12,18),\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}\right)=(2,4,6,9)$ and capacity $\mathrm{m}=15$. WWW.MANARESULTS.CO.IN ${ }^{[10]}$
10.a) Write a nondeterministic algorithm for sorting.
b) Explain the concept of satisfiability.

OR
11. Explain P and NP class problems in detail.

