Code No: 124CT JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **B.Tech II Year II Semester Examinations, December - 2017 DESIGN AND ANALYSIS OF ALGORITHMS** (Information Technology)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

		(25 Marks)
1.a)	What is Big-oh Notation?	[2]
b)	Define degenerated tree.	[3]
c)	Analyze the time complexity of Prims Algorithm.	[2]
d)	List any two differences of prims and Krushkal's algorithm.	[3]
e)	What are the similarities between greedy and dynamic programming.	[2]
f)	Write the steps of Dynamic Programming.	[3]
g)	Define dead node.	[2]
h)	Write the general method of branch and bound.	[3]
i)	What is intractable problem?	[2]
j)	What are the 2 stages of non-deterministic algorithm?	[3]

PART-B

(50 Marks)

[10]

2. Write in detail about Master Theorem. Solve the following recurrence relation using master's theorem. a) T(n) = 2T(n/2) + nLog(n).

b) $T(n) = 8T(n/2) + n^2$ c) $T(n)=9T(n/3)+n^3$.

OR

- Show how quick sorts the following sequence of keys in ascending order 65, 70, 3. 75,80,85,60,55,50 and 45. Analyze the time complexity. [10]
- 4. Find the optimal solution of the Knapsack instance n=3, m=20, $(p_1, p_2, p_3) = (25, 24, 15)$ and $(w_1, w_2, w_3) = (18, 15, 10)$. [10]

OR

5. What is minimum spanning tree? Explain Krushkals's Algorithm and apply for the graph given in figure below. [10]

R15

6. Consider n=4 and $(q_1, q_2, q_3, q_4)=(do, if, int, while)$. The values of r p's and q's are given as p (1:4) = (2, 3, 1, 1, 1). Construct the optimal binary search tree.

[10]

OR

- 7. Explain in detail all pair shortest path problem with an example. [10]
- 8. The edge length of the directed graph are given by matrix. Find the optimal tour using branch and bound. [10]

∞	20	30	10	11
15	∞	16	4	2
3	5	∞	2	4
19	6	18	∞	3
16	4	7	16	∞

9. Draw and explain the portion of the tree for 4-queens problem that is generated during backtracking. [10]

OR

- 10. What is NP-Hard class? Give any three examples. [10]
 OR
 11.a) Briefly explain Cooks-theorem.
- b) Discuss about Max Clique Problem. [5+5]

---00000----

www.ManaResults.co.in