## Code No: 125DR JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, November/December - 2018 AUTOMATA AND COMPILER DESIGN (Information Technology)

## Time: 3 hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

### PART - A

#### (25 Marks)

| 1.a) | Define DFA with example.                                            | [2] |
|------|---------------------------------------------------------------------|-----|
| b)   | Define the following terms - Compiler, Interpreter, and Translator. | [3] |
| c)   | What are types of LR parsers? Compare them.                         | [2] |
| d)   | What are the conflicts occur during shift-reduce parsing.           | [3] |
| e)   | What is meant by name equivalence? Give an example.                 | [2] |
| f)   | Define CFG and CSG with an example.                                 | [3] |
| g)   | What are the limitations of static allocation?                      | [2] |
| h)   | What is dead code elimination?                                      | [3] |
| i)   | What is relocatable machine code?                                   | [2] |
| j)   | Define address descriptor and discuss its importance.               | [3] |
|      |                                                                     |     |

## PART - B

(50 Marks)

| 2.a) | Construct a NFA with $\in$ equivalent to the regular expression:<br>10 + (0 + 11)0*1 |       |
|------|--------------------------------------------------------------------------------------|-------|
| b)   | Explain the role Lexical Analyzer and issues of Lexical Analyzer in compiler design. |       |
| ,    |                                                                                      | [5+5] |
|      | OR                                                                                   |       |
| 3.a) | Write a CFG that generates equal number of a's and b's.                              |       |
| b)   | Construct the predictive parser the following grammar:                               | [5+5] |
|      | $S \rightarrow (L) a$                                                                |       |
|      | $L \rightarrow L, S S$                                                               |       |
| 4.   | Construct LALR parsing table for the grammar given below:                            | [10]  |
|      | S→CC                                                                                 |       |
|      | $C \rightarrow cC d$                                                                 |       |
|      | OR                                                                                   |       |
| 5.a) | Write the short note on:                                                             |       |
|      | i) Abstract syntax tree                                                              |       |
|      | ii) Polish notation                                                                  |       |
|      | iii) Three address code                                                              |       |
| b)   | What is dependency graph MARESCUITATES.CO.IN                                         | [6+4] |



Max. Marks: 75

| 6.a)<br>b)  | Explain in detail Chomsky hierarchy of languages.<br>Explain in detail type conversion with suitable examples.                                | [5+5] |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 7.a)        | Give some solutions to resolve an overloaded symbol.                                                                                          |       |
| b)          | Write short note on function overloading.                                                                                                     | [5+5] |
| 8.          | Explain the different storage allocation strategies.                                                                                          | [10]  |
| 0           | OR                                                                                                                                            | [10]  |
| 9.          | Explain the principle sources of optimization.                                                                                                | [10]  |
| 10.         | State and explain different machine dependent code optimization techniques.<br>OR                                                             | [10]  |
| 11.a)<br>b) | Explain why Next-use information is required for generating object code.<br>Explain in detail about DAG for register allocation with example. | [5+5] |

---00000----

# WWW.MANARESULTS.CO.IN