JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech III Year II Semester Examinations, May - 2016

AEROSPACE PROPULSION- II

(Aeronautical Engineering)

Time: 3 hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

		(20 mum)
1.a)	Distinguish between missile and space launch vehicle.	[2]
b)	Classify various Hypersonic transport vehicles.	[3]
c)	Explain the internal physics of an isolator in supersonic combustion.	[2]
d)	Describe various flow losses encountered in nozzle.	[3]
e)	Explain the characteristic features of liquid and solid propellants.	[2]
f)	Define the terms thrust coefficient and specific impulse.	[3]
g)	Explain Mono propellant and Bi-propellant with example combinations.	[2]
h)	Explain erosive burning and end burning of a solid rocket motor.	[3]
i)	What is the function of solar cell arrays in Propulsion system?	[2]
j)	Explain the problem of gravity loss.	[3]

PART - B

(50 Marks)

- Explain the Reaction control system for space flight propulsion and its applications. 2.a)
- Explain how the power is generated for an in-space spacecraft and how momentum b) thrust is produced. [5+5]

OR

- With a neat sketches explain Low-level strike and Strategic Bombing mission profile 3.a) for a jet aircraft.
- How is forward motion of an aircraft achieved by propeller action? How does the b) aircraft lift off the ground? Explain with the help of illustrative sketches. [5+5]
- Explain in detail the constructional features and working principle of Liquid Air 4.a) Collection Engine (LACE).
 - What is after burning in turbojet engines? Explain briefly with the aid of a diagram. b) [5+5]

OR

Calculate the air flow rate through the engine, cross section area of the propelling 5.a) nozzle exit, thrust, thrust power, propulsive efficiency of a turbojet engine from the following data: Flight mach number = 0.85Flight altitude = 12000 mCross sectional area of the inlet diffuser at entry = 0.5 m^2 Air/fuel ratio = 60Conditions at the exit of the exhaust jet: Pressure = 477 MbarTemperature = 1000 Www.ManaResults.co.in Velocity = 660 m/s

Calorific value of the fuel = 43 MJ/Kg

Describe the working of a scramjet engine. What are its advantages over ramjet engine? b) [6+4]

(25 Marks)

- 6.a) Describe the over expanded and under expanded nozzle for a rocket engine.
- b) A rocket nozzle has a throat area of 18 cm² and combustion chamber pressure of 25 bars. If the specific impulse is 130 seconds and weight flow rate is 44.145 N/s. Determine:
 - i) Thrust Coefficient
 - ii) Propellant Weight Flow Coefficient
 - iii) Specific Propellant Consumption and
 - iv) Characteristic Velocity.

OR

- 7.a) Describe the various factors considered for the design of a rocket.
- b) Consider a rocket engine where the combustion chamber pressure and temperature are 30 atm and 3756 K respectively. The area of the rocket nozzle exit is 15m2 and is designed so that the exit pressure exactly equals ambient pressure at a standard altitude of 25 km. For the gas mixture, assume $\gamma = 1.18$ and the molecular weight is 20. At a standard altitude of 25 km, calculate:
 - i) Specific impulse,
 - ii) Exit velocity,
 - iii) Mass flow,
 - iv) Thrust and
 - v) Throat area.
- 8.a) Explain the solid propellant grain design considerations and the features of various grain configurations.
 - b) Explain briefly the following terms in solid propellant rockets:
 - i) Linear Burning rate
 - ii) Combustion rate
 - iii) Propellant area ratio.

OR

- 9.a) Write a short note on following related to liquid rocket engines:i) Steady state cooling methodsii) Transient cooling methods.
 - b) Why does heat transfer increase during combustion instability in a liquid rocket engines? [5+5]
- 10.a) What do you understand by electrostatic thrusters? Explain the working principle and various types with the help of suitable diagrams.
 - b) Compare the performances of chemical, Nuclear and electro dynamic rockets and discuss their application. [5+5]

OR

- 11.a) What do you understand by electro-thermal thrusters? Explain the working principle and various types with the help of suitable diagrams.
 - b) Write a short note on microwave thermal propulsion system. [5+5]

---00000----

www.ManaResults.co.in

[5+5]

[5+5]

[5+5]