Code No: 131AH JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **B.Tech I Year I Semester Examinations, December - 2017 ENGINEERING PHYSICS - I** (Common to EEE, ECE, CSE, EIE, IT, ETM)

Time: 3 hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks)

1.a)	What are the conditions for constructive and destructive interference?	[2]	
b)	What are the two types of diffractions? Give differences between them.	[3]	
c)	Explain Malus's law.	[2]	
d)	Explain spontaneous and stimulated emission of radiation with energy level	ain spontaneous and stimulated emission of radiation with energy level diagram.	
		[3]	
e)	Explain the basic principle of an optical fiber.	[2]	
f)	Explain the term 'numerical aperture' and 'acceptance angle'.	[3]	
g)	Write an expression for inter planar spacing of a cubic crystal structure.	[2]	
h)	Derive the packing fraction of FCC crystal.	[3]	
i)	State Bragg's law and give the condition for constructive interference.	[2]	
j)	Write notes on 'point defects' in crystals	[3]	

PART-B

(50 Marks)

- 2.a) With a ray diagram discuss the interference in thin films(Reflected light).
- Derive the condition for constructive and destructive interference in the case of reflected b) system.
- Å parallel beam of light λ =5890 Å⁰ is incident on a glass plate (μ =1.5) such that angle of c) refraction is 60° . Calculate the smallest thickness of the plate which will make it appear dark by reflection. [10]

OR

- Discuss the theory of Newton rings with relevant diagram in the reflected light. 3.a)
- Derive the expressions for the diameters of dark and bright rings. b)
- Newton rings are observed in the reflected light of wavelength 5900 A⁰. The diameter of c) tenth dark ring is 0.5cm. Find the radius of curvature of the lens used. [10]
- What is double refraction? 4.a)
 - Explain briefly optic axis and its characteristics. b)
 - Discuss the construction and working of Nicol Prism. c) [10]

OR

- 5.a) What are Einstein's coefficients? Derive relation between them.
 - What the working and by A gruption inversions. b) CO.TN
 - c)

[10]

Max. Marks: 75

R16

6.a) Explain briefly different types of optical fibers.

- b) Derive numerical aperture in terms of fractional difference in refractive indices.
- c) Write any three applications of optical fibers.

OR

[10]

[10]

- 7.a) Draw the block diagram of an optical fiber communication system and explain the function of each block.
 - b) Derive an expression for acceptance angle for an optical fiber.
 - c) What are the different losses in optical fibers? Write brief note on each. [10]
- 8.a) Classify the various Bravias lattice types in the crystal systems.
 - b) Zinc has HCP structure. The height of the unit cell is 0.494 mm. The nearest neighbor distance is 0.27 mm. Calculate the volume of the unit cell.
 - c) Describe the structure of diamond.

OR

- 9.a) Determine the inter-planar spacing between the two parallel planes with miller indices (h,k,l) in a cube of side 'a'.
 - b) Sketch the following planes of a cubic unit cell: (001), (120) and $(\overline{2}11)$.
 - c) A plane makes intercepts 1, 2 and 3 A^0 on the crystallographic axes of an ortho-rhombic crystal with a:b:c = 3:2:1. Determine the miller indices of this plane. [10]
- 10.a) How the X-ray diffraction can be employed to determine the crystal structure? Explain.
 - b) Describe with neat diagram, Laue's method of determination of crystal structure.
 - c) X-rays of wavelength 1.5418 A⁰ are diffracted by (111) planes in a crystal at an angle 30⁰ in the first order. Calculate the inter atomic spacing. [10]

OR

- 11.a) Write notes on surface defects in crystals.
 - b) What is Burger's Vector? Explain.
 - c) Explain edge dislocation and screw dislocation. [10]

---00000----

WWW.MANARESULTS.CO.IN