Code No:131AK

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech I Year I Semester Examinations, December - 2018 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (Common to EEE, ECE, CSE, EIE, IT, ETM)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

(25 Marks)

1.a) For the circuit shown in figure 1. Find the relation between v_1 and v_2 . [2]

Figure: 1

Explain Source transformation with the help of neat diagrams. [3] b) Write the statement of Super Position Theorem. c) [2] d) What is Q-Factor and explain its significance? [3] How does a diode appear as in its forward region of its characteristic? Explain. [2] e) How does junction capacitance of a linearly graded junction varies with the applied f) reverse voltage V_R? [3] Differentiate between the terms h_{FE} and h_{fe} . Write the relationship between them. [2] g) h) Draw the h-parameters model of transistor. [3] i) Give different regions of operation of JFET. [2] j) What is pinch-off voltage? Give its equation. [3]

PART - B

(50 Marks)

2.a) Find V_0 in the circuit, shown in figure 2.

Figure: 2

- b) Define and give symbols of the following:
 - i) Dependent sources
 - ii) Independent Sources
 - iii) Practical Sources
 - iv) Ideal Sources WWW . MANARESULTS . CO . IN

[6+4]

3.a) If Req=50 ohm, in the circuit shown in figure 3 find R?

Figure: 3

b) Calculate V_o and I_o in the circuit shown in figure 4.

- 4.a) A parallel Resonant circuit has $R = 5K\Omega$, L = 8mH, and $C = 60\mu F$. Determine:
 - i) Resonant frequency
 - ii) The band width
 - iii) The Quality Factor
 - b) Solve for 'i' using Norton's Theorem in the circuit shown in figure 5.

[5+5]

Figure: 5

5.a) Find v_o using super position theorem in the circuit shown in figure 6.

Figure: 6

b) Find the Maximum power that can be delivered to R in the circuit shown in figure 7.

WWW.MANARESULTS.CO.IN

6.a)	Compare C, L,	L-Section,	Π-Section	(CLC and CR	C) Filters	in all respects.

b) Explain the operation of Half wave Rectifier with the help of neat diagrams. [6+4]

OR

- 7.a) Obtain different equivalent Circuits of a PN Junction diode.
 - b) Explain the VI characteristics of PN Junction diode with neat diagrams and explain. What is Static Resistance and Dynamic Resistance? [5+5]
- 8. Draw CE Configuration with Voltage divider bias and then analyze 0^0 t of Q point and stability factors. [10]

OR

- 9. Illustrate the input and output characteristics of BJT in three configurations. [10]
- 10.a) Compare BJT and JFET devices in all respects.
 - b) Obtain the expression for the pinch off voltage V_p in case of n-channel JFET. [5+5]
- 11. Describe the principle of operation and V-I characteristics with the help of energy band diagrams. Highlight negative resistance region on the V-I characteristics. [10]

---00O00---