www.ManaResults.co.in

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, May/June - 2017 **ENGINEERING PHYSICS – II**

(Common to EEE, ECE, CSE, EIE, IT)

Time: 3 hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

1.a)	Calculate de-Broglie wavelength of 5 KeV neutron. Given mass of t	the neutron is
	1.675×10^{-27} kg.	[2]
b)	Explain the significance of a wave function.	[3]
c)	Distinguish between intrinsic and extrinsic semiconductors.	[2]
d)	Explain the energy diagram of a p-n junction diode.	[3]
e)	Define the terms electric displacement vector and susceptibility.	[2]
f)	Explain the structure of BiTiO ₃ .	[3]
g)	A paramagnetic material has magnetic field intensity 2×10^4 A/m. If the	Susceptibility
	of the material is 3.0×10^{-4} , calculate the flux density.	[2]
h)	What are the applications of superconductors?	[3]
i)	What is surface to volume ratio?	[2]
j)	Explain the working principle of TEM.	[3]

PART-B

(50 Marks)

2.a)	Derive an expression for Schrodinger's time independent wave equation.	
b)	Explain the origin of bands formation in solids.	[5+5]
	OR	
3.a)	Explain Kronig – penny model qualitatively.	
b)	Describe the theory of one dimensional particle in a box.	[5+5]
4.a)	Calculate the carrier concentration in an n-type of semiconductor.	
b)	Describe the I-V characteristics of a solar cell.	[5+5]
	OR	
5.a)	Describe the Fermi level in the context of intrinsic semiconductor and expression for it.	derive an
• •		

b) Explain the formation of p-n junction. [5+5]

Code No: 132AA

Max. Marks: 75

(25 Marks)

6.a)	Derive the expressions for electronic polarizability in a dielectric.	
b)	Explain Piezo and Pyroelectricity in dielectrics.	[5+5]
	OR	
7.a)	Derive Classius – Mosotti relation in dielectrics.	
b)	Write a note on Ferroelectricity.	[5+5]
8.a)	Distinguish between para, ferro and Ferri magnetic materials.	
b)	Distinguish between soft and hard magnetic materials.	[5+5]
	OR	
9.a)	Describe Hysteresis curve on the basis of Domain theory.	
b)	What is superconductivity? Explain Meissner effect.	[5+5]
10.a)	Describe sol-gel method to synthesis nano materials.	
b)	How do you characterize nanomaterials by XRD?	[5+5]
	OR	
11.a)	Describe the Ball mill method to synthesize nano material.	
b)	What is nanoscale? Explain the quantum confinement at nanoscale.	[5+5]

---00000----