Code No: 132AB

R16
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech I Year II Semester Examinations, April - 2018

MATHEMATICS-II
(Common to EEE, ECE, CSE, EIE, IT, ETM)

Time: 3 hours

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) Find $L\left\{t^{2} u(t-1)\right\}$.
b) Obtain the inverse Laplace transform of $F(s)=\cot ^{-1} s$.
c) Find the value of $\Gamma\left(\frac{-1}{2}\right)$.
d) Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\tan \theta} d \theta$ using Beta and Gamma functions.
e) Evaluate $\iint_{R} \sqrt{x^{2}+y^{2}} d x d y$ by changing to polar coordinates, where R is the region in the $x y$ - plane bounded by the eircles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
f) Find the value of the triple integral $\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{2} r^{2} d r d \theta d \phi$.
g) Find the normal vector and unit normal vector to the surface $z^{2}=x^{2}-y^{2}$ at $(2,1, \sqrt{3})$.
h) If \vec{a} is a constant yector and $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, prove that $\operatorname{div}(\vec{a} \times \vec{r})=0$.
i) Evaluate $\int_{c}\left(x^{2}+y z\right) d z$, where c is given by $x=t, y=t^{2}, z=3 t, 1 \leq t \leq 2$.
j) State Gauss's divergence theorem.

PART-B

(50 Marks)
2.a) Find the Laplace transform of $f(t)=e^{-t}\left[\int_{0}^{t} \frac{\sin \ddot{u}}{u} d u\right]$.
b) Find the Laplace transform of the periodic function $f(t)=t, 0 \leq t \leq a, f(t+a)=f(t)$. $\square \square \square \mathbf{O R}$
3.a) Obtain $L^{-1}\left\{\frac{s}{\left(s^{2}+1\right)^{2}}\right\}$ using convolution theorem.
b) Solve the initial value problem $y^{\prime \prime}+3 y^{\prime}+2 y=e^{-t}, y(0)=0, y^{\prime}(0)=-1$ using Laplace transforms.
[5+5]
4.a) Evaluate $\int_{0}^{\infty} x^{4} e^{-2 x^{2}} d x$.
b) Prove that $\beta(m, n)=\int_{0}^{1} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} d x$.
5.a) Prove that $\beta(m, n)=2 \int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta=\beta(m+1, n)+\beta(m, n+1)$.
b) Prove that $\int_{0}^{1} x^{m}(\ln x)^{n} d x=\frac{(-1)^{n} n!}{(m+1)^{n+1}} \quad$ where $m>1$ and n is a positive integer.
6.a) Change the order of integration in $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$ and hence evaluate the same.
b) Find the area of the region bounded by the parabolas $y^{2}=4 x$ and $x^{2}=4 y$.

OR
7.a) Evaluate $\iiint_{v}(1-x) d x d y d z$, where v is the space in the first octant below the plane $3 x+2 y+z=6$.
b) Find the volume of the solid enclosed between the surfaces $x^{2}+y^{2}=4$ and $x^{2}+z^{2}=4$.
8.a) Find the values of a and b so that the surface $a x^{2}-b y z=a+2$ is orthogonal to the surface $4 x^{2} y+z^{3}=4$ at $(\cdots 1,-1,2)$.
b) Find the directional derivative of the scalar function $f(x, y, z)=x y z$ at $(1,4,9)$ in the direction of the line from $(1,2,3)$ to $(1,-1,-3)$.

OR
9.a) If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}^{\text {and }} r=|\vec{r}|$, show that $\nabla \cdot\left(\frac{\vec{r}}{r^{3}}\right)=0$.
b) Prove that curl $\operatorname{cürl} \vec{v})=\nabla(\nabla \cdot \vec{v})-\nabla^{2} \vec{v}$.
10.a) Show that $\int_{c}(2 x y+3) d x+\left(x^{2}-4 z\right) d y-4 y d z$, where c is any path joining $(0,0,0)$ to $(1,-1,3)$, does not depend on the path c and evaluate the integral.
b) Apply Stoke's theorem to evaluate $\oint(x+y) d x+(2 x-z) d y+(y+z) d z$, where c is the boundary of the triangle with vertices $(2,0,0),(0,3,0$ and $(0,0,6)$.
11. Verify Green's theorem for $\oint_{c} e^{-x}(\cos y d x-\sin y d y)$, where c is the rectangle with vertices $(0,0),(\pi, 0),\left(\pi, \frac{\pi}{2}\right)$ and $\left(0, \frac{\pi}{2}\right)$.

---00000---

\square

$+$

\square

